
NEXUS
JREBEL

IVYJenkins
HUDSON A R T I FA C T O R YVISUALVM

Gr adleMAVEN
ANT

//JULY/AUGUST 2012 /

ORACLE.COM/JAVAMAGAZINE

31
Adam Bien on
His Java EE 6
Stress Test
Monitoring Tool

16
QuantCell
Research:
Building a Better
Spreadsheet

45
Fork/Join
Framework
for Client
Java Applications

With a bevy of cloud-based
tools available, it’s a great time
to be a Java developer 34

DEVELOPER POWER

http://oracle.com/javamagazine

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

AB
O

U
T

U
S

01

JA
VA

 T
EC

H
JA

VA
 IN

 A
CT

IO
N

CO
M

M
UN

IT
Y

blog

//table of contents /

16
Java in Action
BUILDING
A BETTER
SPREADSHEET
Java powers analytic
breakthroughs at
QuantCell Research.

45
Java Architect
FORK/JOIN
FRAMEWORK
FOR CLIENT
JAVA APPLI-
CATIONS
A great match for
CPU-intensive
client-side
applications

COMMUNITY
02
From the Editor
04
Java Nation

11
JCP Executive Series
Q&A with Gil Tene
Azul Systems’ CTO discusses
Java and the JCP.

JAVA IN ACTION
20
Direct Connection
Why Java is the right choice
for priceline.com

JAVA TECH
24
New to Java
Learning and Teaching
Object Orientation
with BlueJ
A systematic and experimen-
tal approach to learning Java

27
New to Java
Introduction to Web
Service Security
Secure your Web services.

40
Java Architect
HotSpot’s
Hidden Treasure
Try this debugging tool.

50
Java Architect
How to Modify javac
Change javac to implement
new language syntax features.

54
Rich Client
Lazy Evaluation, Lazy
Initiation, and Custom
Bindings in JavaFX 2
Jim Weaver on the lazy way
to get things done

58
Enterprise Java
Threading and
Concurrency
The importance of centralized
resource management

64
Mobile and Embedded
Wirelessly Back Up
Your Device’s
Address Book
Create a MIDlet to schedule a
backup of your address book.

67
Mobile and Embedded
Oracle Berkeley DB
Java Edition’s Java API
Ted Neward shows us how
this Java API works.

71
Fix This
Try our ConnectionPool.java
code teaser.

PHOTOGRAPH BY BOB ADLER

31
Q&A
TALKING WITH
ADAM BIEN
A Java Champion
on his Java EE 6
stress test
monitoring tool

34
Tools

DEVELOPER
POWER
With a bevy of cloud-based tools
available, it’s a great time to be a Java
developer.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://priceline.com

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

CO
M

M
U

N
IT

Y

02

JA
VA

 T
EC

H
AB

OU
T

US
JA

VA
 IN

 A
CT

IO
N

blog

//from the editor /

	 ava developers are known to be passionate, even religious, about their IDEs and other tools. With the
emergence of a whole slate of new open source and commercial tools (virtually all of them cloud-based) over
the past five years, there’s an awful lot to be passionate about.

There are several reasons for this Cambrian explosion of solutions in this area. For one, agile development
practices, which are now extremely common on a global scale, cry out for collaborative tools that make the
continuous build process manageable. Development teams are also more geographically dispersed than ever
before. Furthermore, the popularity and easy availability of many thousands of open source modules and
frameworks, which are otherwise often integrated into an application’s code base without much regard for
their provenance, make code governance a bit more important than in the past.

There is also a cloud-related factor to be considered on the supply side of the equation: cloud comput-
ing has simply made it possible for many of these solutions to be brought to a broad market in a relatively
frictionless way. Furthermore, online communities like Java.net and GitHub have wrapped up some of these
technologies in nice social packages that speed adoption through network effects.

But enough abstract discussion. Jump to this issue’s special feature on the topic,
“Developer Power” (not intended to be exhaustive, just representative).

Speaking of passion: Zoran Severac’s “Java People” performance impressed us so
much that we’re opening a general Java Nation call for songs. If you’re a songwriter
who appreciates Java and the Java community, send us a link to your composition. It
may become our official Java Nation anthem!

Justin Kestelyn, Editor in Chief BIO

//send us your feedback /

We’ll review all
suggestions for future
improvements.
Depending on volume,
some messages may
not get a direct reply.

J

PHOTOGRAPH BY BOB ADLER

GIVE BACK!
ADOPT A JSR

Find your JSR here

http://oracle.com/javamagazine
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
http://home.java.net
https://github.com/
http://www.youtube.com/watch?v=Lr21dk4d3qM
mailto:javamag_us%40oracle.com?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://blogs.oracle.com/java/entry/adopt_a_jsr
javascript:openPopup('bio_p2')
javascript:openPopup('video_p2')

Subscribe and gain instant cutting-edge
development insight from the world’s most
trusted tech publishers — all in one
on-demand digital library.

• �Get unlimited access to 20,000+ online books
and training videos from100+ publishers

• �Search full text to efficiently get the answers
you need

• �Make notes and organize content into folders
you control

• �Elevate your career with thousands of top
business and professional development titles

Access Safari Books Online on virtually any device with a browser.
ANYTIME, ANYWHERE:

Start a free unlimited-access trial today safaribooksonline.com/javamag

Answers. Fast.

http://www.safaribooksonline.com/javamag

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

CO
M

M
U

N
IT

Y

04

JA
VA

 T
EC

H
AB

OU
T

US
JA

VA
 IN

 A
CT

IO
N

blog

JavaOne 2012 comes to San Francisco, California, September 30–
October 4. It’s time to make your plans, because you won’t want to
miss this conference. JavaOne—known for its educational offerings,
community, and networking—is a place to improve your working
knowledge and coding expertise, learn from the world’s foremost
Java experts, meet with fellow developers in formal and casual set-
tings, and enjoy one of the world’s great cities.

This year’s JavaOne promises a wealth of content focused on the
evolution and future of Java technology as well as tools, resources,
and best practices that developers need to design and build rich,
compelling, and individualized services across diverse technologies.
Conference planning is still under way, but here are the highlights:

Keynotes. The confer-
ence kicks off on Sunday,
September 30, with the
Java Strategy, Partner, and
Technical keynotes beginning
at 4 p.m. To accommodate
the ever-growing number of
attendees, keynotes will be
held at the historic Masonic
Auditorium on Nob Hill. After
the keynotes, attendees can
head to the official JavaOne
Open House at the Taylor
Street Café in the Zone.
Sessions. Sessions start
on Monday, October 1, and
attendees can choose from
hundreds of expert-led
technical sessions, hands-on
labs, panel discussions, and

birds-of-a-feather sessions. Check out the JavaOne 2012 track
titles and descriptions.
Exhibition Hall. The Java Exhibition Hall brings innovation and prac-
tical learning into one convenient location: the Zone, which features
exhibitor booths, technology demonstrations, partner exhibits, and
more. Don’t miss the chance to network with Java experts, develop-
ers, Oracle and its partners, and architects from around the world.
Rock stars. This year’s conference will again feature JavaOne “rock
star” speakers, recognized for both their Java technical expertise and
their speaking skills in the event’s highest-rated sessions.
Java University. The Java University preconference gives you a chance
to get even more from your conference experience by attending a full
day of in-depth Java training delivered by experts on Sunday, before
the conference officially kicks off with the opening keynote at 4 p.m.
Register. Make your travel and lodging plans, and register now!

Attendance topped 2,000
at JavaOne Russia, April
17–18, in Moscow—clearly
showing that interest in
Java technologies in Russia
is on the rise. At the Core
Java Platform keynote,
Oracle’s Georges Saab
(above right) and Mike
Lehmann (above left) spoke
to a packed house. JavaOne
Russia featured more
than half of its sessions in
Russian, and Java booths
were staffed by at least
two engineers. A highlight
included the Hackzone,
where participants could
bring their issues and get
suggestions immediately.

JavaOne
Russia 2012

//java nation /

PHOTOGRAPH BY SAUL LEWIS

The Zone will be the hub of
JavaOne activity September
30–October 4.

GET READY FOR
JAVAONE 2012

http://www.oracle.com/javamagazine
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
http://www.oracle.com/javaone/index.html
http://www.oracle.com/javaone/program/schedule/tracks/index.html
http://www.oracle.com/javaone/program/schedule/tracks/index.html
http://www.oracle.com/javaone/exhibit-sponsor/exhibition-hall/index.html
http://www.oracle.com/javaone/register/packages/index.html

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

CO
M

M
U

N
IT

Y

05

JA
VA

 T
EC

H
AB

OU
T

US
JA

VA
 IN

 A
CT

IO
N

blog

//java nation /

More than 2,000 people attended JavaOne
India, held May 3–4 in Hyderabad. This
regional JavaOne conference included
informative keynote and technical sessions,
hands-on labs, and an Oracle Technology
Network room for community-related
presentations.

The Java Strategy keynote reminded the
Indian Java community of the power and
strength of Java and reaffirmed Oracle’s
commitment to Java. Oracle Java engineer-
ing executives Nandini Ramani and Anil Gaur
provided an overview of the technology road-
map for Java, including plans for Java SE 8,

the focus on the cloud for Java EE 7, and the
Java SE and ME/embedded convergence.
“Oracle has aggressive plans for Java over
the next few years, and we are continuing
to drive technical advancements across the
platform,” Gaur said.

At the Nokia keynote, Gerard J. Rego, head
of ecosystem and developer experience at
Nokia, provided an overview of the state of
mobile technology. The keynote included a
video about a cool mobile application called
Nano Ganesh that controls water pumps via
mobile phone, a boon for Indian farmers
so they don’t have to walk to their pumps

at night. The developer, Santosh Ostwal,
came on stage to discuss his application and
encouraged developers to use their creativ-
ity to solve problems. “Don’t think of it as
a phone; think of it as a low-cost wireless
device,” he said. See Nano Ganesh in action.

In the technical sessions and at the
booths, there was lots of interest in JavaFX,
Java EE 6, JDK 8/9/10, and Project Avatar. In
addition, many Java user group (JUG) lead-
ers from across India came to JavaOne India
to network with community members and
share their expertise. Watch them talk about
their JUGs and the challenges they face.

Java.net’s Java
Tools Community

The Java Tools
Community is one
of the most active

communities on Java.net. Led by
Fabiane Bizinella Nardon, Anton
(Toni) Epple, and Daniel López
Janáriz, the community supports
the development of open source
Java development tools on Java
.net, offering guidance and feed-
back to Java Tools project leaders
and visibility to their projects.

Key projects associated with
the Java Tools Community
include VisualVM (a tool that
visually integrates command-
line JDK tools and lightweight
profiling capabilities); Hudson
CI (a continuous integration [CI]
tool); Jailer (a tool that provides
data exportation of referentially
intact row sets); ThreadLogic (a
graphical interface for analyz-
ing Java thread dumps); Java
Application Bundler (a tool that
packages a Java application as
a Mac application bundle); and
JTHarness (a fully featured test
framework that facilitates com-
prehensive unit testing).

If you have an idea for an open
source Java tool, consider hosting
your project on Java.net and join-
ing the Java Tools Community.

JAVAONE INDIA 2012

Left to right: JavaOne India
attendees learn hands on;
Oracle’s Nandini Ramani
provides a technology
roadmap; attendees discuss
what sessions to attend.

http://www.oracle.com/javamagazine
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
http://en.wikipedia.org/wiki/Nano_Ganesh
http://www.youtube.com/watch?v=Q5gfWt30Pjk
https://blogs.oracle.com/javaone/entry/videos_of_jug_leaders_at
http://community.java.net/community/javatools
http://community.java.net/community/javatools
http://www.tridedalo.com.br/fabiane/
http://eppleton.de/blog/
http://eppleton.de/blog/
http://visualvm.java.net/
http://java.net/projects/hudson/
http://java.net/projects/hudson/
http://java.net/projects/jailer/
http://java.net/projects/threadlogic/
http://java.net/projects/appbundler/
http://java.net/projects/appbundler/
http://jtharness.java.net/

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

CO
M

M
U

N
IT

Y

06

JA
VA

 T
EC

H
AB

OU
T

US
JA

VA
 IN

 A
CT

IO
N

blog

WHEN THE SILICON VALLEY WEB DEVELOPER JAVA USER
GROUP WAS FORMED in April 2003 by Van Riper, its initial
focus was on the Jakarta Struts framework. In July 2004,
the focus was broadened to include J2EE. Today, the group
covers all Java technologies and as of April 2012 is known
as the Silicon Valley Java User Group (SVJUG).

Kevin Nilson joined Riper as coleader in 2007, when the
group still had fewer than 100 members. Joining Meetup
in 2009 proved to be a turning point in growth. By August
2009, the group had 536 members, which doubled to 1,071
by May 2010. Current membership exceeds 2,300.

SVJUG meets on the third Wednesday of each month at
Google headquarters in Mountain View, California, with
attendance ranging from 100 to 200 people. The JUG’s
location provides many advantages, Nilson says, especially
with regard to speakers. “Some of the top speakers we have
had are James Gosling, Joshua Bloch, Rod Johnson, Neal
Gafter, Bob Lee, Gavin King, Chet Haase, Romain Guy, and
the Java Posse.”

Even the attendees have been known to give presen-
tations in a pinch. “Once I made a scheduling mistake
and realized that our speaker was not scheduled to come
until one month later,” Nilson says. “Luckily jQuery com-
mitters Jonathan Sharp and Mike Holster were in the
front row. At 6:55 p.m., I approached them about giving a
talk at 7:00 p.m. Jonathan and Mike were happy to fill in
and gave a great presentation.”

Marakana TechTV records many SVJUG talks, and when
the JUG cohosts a meeting with the Silicon Valley JavaFX
Meetup, Marakana live-streams the event. “Our group has
been very lucky because others have stepped up to help
record our talks,” notes Nilson. “We do not do any of our
own recording, so usually only popular talks get recorded.”

SVJUG members also actively participate in the Silicon
Valley Code Camp, a community event where developers
learn from fellow developers. All are welcome to attend and
speak—more than 2,000 developers attended last year.
SVCC 2012 will be held October 6–7 (following JavaOne).

PHOTOGRAPHS COURTESY OF SILICON VALLEY JUG

ART BY I-HUA CHEN

JDK FOR MAC OS X
AVAILABLE

Oracle has released its
first Java Development
Kit (JDK) and JavaFX
Software Development
Kit (SDK) for Mac OS X.

Java developers can now download
Java Platform, Standard Edition 7,
Update 4 (Java SE 7 Update 4) and
JavaFX SDK 2.1 for Mac OS X from
Oracle Technology Network. The Java
SE 7 Update 4 SDK includes the next-
generation Garbage Collection algo-
rithm, Garbage First (G1), which has
been highly anticipated by the Java
developer community.

JavaFX 2.1 introduces playback
support for digital media stored in
the MPEG-4 multimedia container
format containing H.264/AVC video
and Advanced Audio Coding audio.
It also includes WebView support for
JavaScript to Java method calls. “We
look forward to delivering simultane-
ous releases of the JRE [Java runtime
environment] across all major operat-
ing systems later this year, so all Java
users will be able to take advantage of
the latest features and security fixes,”
says Hasan Rizvi, senior vice president
of Oracle Fusion Middleware and Java
products at Oracle.

Silicon Valley JUG Mountain View, California

At a Silicon Valley
JUG meeting
in May, speaker
David Montag of
Neo Technology
provided a high-
level introduction to
graph databases.

JAVA USER GROUP PROFILE

//java nation /

http://www.oracle.com/javamagazine
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
http://www.meetup.com/sv-jug
http://marakana.com/techtv/about.html
http://www.siliconvalley-codecamp.com/
http://www.siliconvalley-codecamp.com/
http://www.oracle.com/technetwork/java/javase/downloads/index.html

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

CO
M

M
U

N
IT

Y

07

JA
VA

 T
EC

H
AB

OU
T

US
JA

VA
 IN

 A
CT

IO
N

blog

//java nation /

Java came to life at the Maker Faire Bay Area 2012
(May 19–20 in San Mateo, California). In the Java
Zone in the Expo Hall, attendees explored storyboard-
ing, 3-D animation building, device programming,
body motion sensors, game making, and more. They
learned how Java interacts with other devices using
a motion sensor and a Webcam, and how Microsoft
Kinect records motion to animate a Java game.
Attendees also played Breakout using the PicoBoard,
an external circuit board with sensors for sound and
light, slider and button controllers, and four resistance
sensors. They also had the opportunity to try out Alice,
a tool used to teach Java programming fundamentals
using 3-D graphics and a drag-and-drop interface;
Greenfoot, a 2-D tool ideal for teaching Java program-
ming basics in high schools and universities; and other
tools for the twenty-first-century classroom.

The 2012 Maker Faire also offered several interesting
presentations at center stage, including “Gamification,
Robotics, and Simulators: How to Get Started with Java
Programming.” This panel, targeted at students and
newbies, focused on why Java technology dominates
cutting-edge software development, and provided
ways to get started learning programming and Java.
Java Magazine’s Justin Kestelyn moderated the panel
of Oracle employees: Caron Newman, senior curricu-
lum manager for Oracle Academy; Daniel Green, sys-
tems engineer; Kevin Roebuck, solution specialist with
Oracle’s global education team; and Ultan O’Broin,
director of global user experience. They discussed why
Java is such a great tool for education.

JAVA AT
MAKER FAIRE

PHOTOGRAPHS BY SAUL LEWIS

JavaSpotlight Podcast
Listen to the JavaSpotlight podcast
for interviews, news, and insight for
and from Java developers. Hosted
by Roger Brinkley and Terrence Barr,
this weekly show includes a rotating
panel of all-star Java developers.

Future Java developers played games at the
Java booth at Maker Faire Bay Area 2012.

At an Oracle cloud strategy Webcast on June 6, Oracle
CEO Larry Ellison introduced Oracle Developer Cloud
Services, a component of Oracle Cloud Platform Services.
Oracle Developer Cloud Services will provide instant
access to tools that enable faster, smarter, and more-
collaborative development in the cloud. With Developer
Services, development teams can use their favorite tools
(Hudson for continuous integration, Git and GitHub for
source control, wiki and tasks for project management)
in the Oracle Cloud. Integration with popular IDEs such
as Oracle JDeveloper, Eclipse, and NetBeans makes
Developer Services an excellent way to maximize produc-
tivity and innovation.

Develop in the Cloud

Oracle CEO
Larry Ellison
discussed the
ease of developing
applications for
the cloud.

http://www.oracle.com/javamagazine
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
http://youtu.be/SvgsMYBypjU
http://www.picocricket.com/picoboard.html
http://www.alice.org/
http://greenfoot.org/door
http://fora.tv/2012/05/20/Gamification_Robotics__Simulators_Start_Using_Java
http://fora.tv/2012/05/20/Gamification_Robotics__Simulators_Start_Using_Java
http://fora.tv/2012/05/20/Gamification_Robotics__Simulators_Start_Using_Java
https://academy.oracle.com
https://blogs.oracle.com/javaspotlight/
https://blogs.oracle.com/javaspotlight/
javascript:openPopup('video_p7')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

CO
M

M
U

N
IT

Y

08

JA
VA

 T
EC

H
AB

OU
T

US
JA

VA
 IN

 A
CT

IO
N

blog

//java nation /

Java Champion Jorge Vargas,
freelance Java consultant,
blogger, and cofounder and
CTO of the geolocalization-
based application Yumbling,
talked about what he does
when he’s not working.

Java Magazine: Where did
you grow up?
Vargas: In Mexico City. Now
I’m living near there in a
small town named Calimaya.
Java Magazine: When did you
first become interested in
computers?
Vargas: When I was 16,
my friend Adolfo was very
interested in computers,
so I started studying and
experimenting, too. My first
formal project was a Lotus
1-2-3 application I wrote for
a building company that cal-
culated project costs. I wrote
4,000 lines of code and was
paid about US$300.
Java Magazine: What was
your first computer and pro-
gramming language?
Vargas: The first language I
learned was Basic, along with
macros in Lotus 1-2-3. Next, I
spent some years with Visual
Basic (3.x and 4.x). My first
computer was a 286 running
MS-DOS 4.0, with a 100 MB

hard drive and 640 KB of
RAM—a real monster!
Java Magazine: What do you
enjoy for fun and relaxation?
Vargas: Well, I enjoy pro-
gramming for fun! I also play
piano and enjoy looking at
the stars. In school, I spent
many fun months building
my own telescope.
Java Magazine: What’s a typi-
cal “family day”?
Vargas: During the work
week we talk, and I help
with homework if I’m not
too busy. We enjoy going to
the cinema and eating out. I
visit my parents to talk about
plants, flowers, or politics, or
to play cards or dominoes.
Java Magazine: What side
effects of your career do you
enjoy the most?
Vargas: I remember a deli-
cious dinner in San Francisco
with other Java Champions;
it was wonderful because

we shared different points
of view about our careers.
I’m thankful that my career
has permitted me to travel,
and especially to have close
contact with universities and
their students.
Java Magazine: Has being
a Java Champion changed
anything for you with respect
to your daily life?
Vargas: When I became a Java
Champion, I felt I needed to
expend more effort sharing
my experiences and knowl-
edge at universities, con-
ferences, and workshops. I
consider this a responsibility
of the role, because people
ask me more questions, and
value my judgment.
Java Magazine: What are you
looking forward to in the
coming years?
Vargas: I want to expand my
career possibilities and also
study piano. Professionally,
I’ll continue working on
Yumbling. And I want to write
for Java Magazine!

Read more about Jorge Vargas
in “An Interview with Java
Champion Jorge Vargas.” You
can also visit his blog and find
him on Twitter (@edivargas)
and Facebook.

JAVA CHAMPION PROFILE

JORGE VARGAS

Over its nine-year history, Jitsi has evolved
from a Session Initiation Protocol (SIP)
research project into a widely used open
source Java Voice over IP (VoIP) and instant
messaging client that supports five full-
time developers working at Blue Jimp.
According to Jitsi Project Lead Emil Ivov,
SIP Communicator (Jitsi’s predecessor),
released in 2003, did SIP calls, includ-
ing video. In 2006, additional developers
joined the project. The entire code base was
reworked, and Jitsi was born. In 2009, Ivov
founded Blue Jimp, which offers customers
professional support, maintenance, and
custom development related to Jitsi.

Several development milestones have
increased Jitsi’s user base over the years,
including the expansion of Jitsi’s video

footprint from 160 x 120 pixels to 640
x 480 pixels; support for ZRTP and call
encryption; and support for Extensible
Messaging and Presence Protocol (XMPP)
(enabling video calls using Google Talk,
Gmail, and Android phones).

The latest Jitsi releases have added the
capability to establish conference calls in
situations where people are using different
protocols; Domain Name System Security
(DNSSEC) support; and additional hot-plug
support for audio devices.

The development team is currently
working on features to be released in the
coming months, including the Jitsi Android
port and high-quality video conferencing.

More than 100 developers have contrib-
uted to the Jitsi code base. Currently, more
than 20 developers contribute new code
and patches, and many users test snapshot
versions and report the issues they find.
According to Ohloh, the Jitsi code base
consists of more than 700,000 lines of
source. About 50,000 users download the
application each month. The total user base
for Jitsi (including all of its branded incar-
nations) could approach 1 million people.

“FOSS [free and open source software] is
a viable option for anyone setting up a new
project,” Ivov says. “Business models that
rely on selling licenses to end users simply
don’t scale. With FOSS you get to concen-
trate on development, and you also gain
valuable outside contributions.”

This article is the first in a series of Java
.net project profiles. Want to have your
project profiled in Java Magazine? Tell us
why it’s great.

FEATURED JAVA.NET PROJECT

JITSI

Blue Jimp developers collaborate using
Jitsi, an open source Java VoIP client.

http://www.oracle.com/javamagazine
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
http://www.jorgevargas.org/
http://www.yumbling.com/
http://www.oracle.com/technetwork/articles/java/vargas-1539026.html
http://www.oracle.com/technetwork/articles/java/vargas-1539026.html
http://www.jorgevargas.org/
https://twitter.com/#!/edivargas
http://www.facebook.com/edivargas
https://jitsi.org/
http://www.voip-info.org/wiki/view/SIP
http://bluejimp.com/index.php
http://zfoneproject.com/zrtp_ietf.html
http://xmpp.org/
http://xmpp.org/
http://www.dnssec.net/
http://www.dnssec.net/
https://jitsi.org/team
http://www.ohloh.net/p/Jitsi
http://download.jitsi.org
mailto:javamag_us%40oracle.com?subject=
mailto:javamag_us%40oracle.com?subject=

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

CO
M

M
U

N
IT

Y

09

JA
VA

 T
EC

H
AB

OU
T

US
JA

VA
 IN

 A
CT

IO
N

blog

//java nation /

EVENTS
JavaOne 2012 SEPTEMBER 30–OCTOBER 4,
SAN FRANCISCO, CALIFORNIA

Java continues to move forward. Experts from the
worldwide Java community will share unique and
leading-edge content with attendees at JavaOne 2012.
Tracks range from the stronger-than-ever core Java
platform and advancements in tools and techniques
that make it easier to write better code in less time to
the application development languages that utilize the
power of the Java Virtual Machine, including Groovy,
JavaScript, JRuby, Kotlin, and Scala. Don’t miss it!

AUGUST
QCon
AUGUST 4–5
SÃO PAULO, BRAZIL
QCon is an enterprise software
development conference designed
for team leads, architects, and proj-
ect management and is organized
by and for the community. Topics
include architecture, functional lan-
guages, mobile, agile engineering
practices, and more. The keynote
lineup includes Martin Fowler, chief
scientist at ThoughtWorks, and
Zach Holman, architect of GitHub.

The No Fluff Just Stuff Software
Symposium Tour
Since 2001, the No Fluff Just Stuff
(NFJS) Software Symposium Tour
has delivered more than 275 events
with more than 40,000 attendees.
NFJS is known for knowledgeable
speakers and timely presentations
that cover the latest trends within
the Java ecosystem and agility
space. Upcoming symposium dates
include the following:

Research Triangle Software
Symposium
AUGUST 24–26
RALEIGH, NORTH CAROLINA

Pacific Northwest Software
Symposium
SEPTEMBER 7–9
SEATTLE, WASHINGTON

New England Software Symposium
SEPTEMBER 14–16
BOSTON, MASSACHUSETTS

Greater Atlanta Software
Symposium
SEPTEMBER 21–23
ATLANTA, GEORGIA

SEPTEMBER
Web Developer Conference
(WDC) 2012
SEPTEMBER 17–18
HAMBURG, GERMANY
This conference for develop-
ers of Web applications, content
and online managers, agencies,
and Webmasters focuses on pro-
fessional development of Web
applications.

onGameStart 2012
SEPTEMBER 19–21
WARSAW, POLAND
At the self-dubbed “first HTML5
game conference,” speakers include
Andres Pagella, Jerome Etienne,
Jon Howard, Jonas Wagner, Jordan
Mechner, and many others.

The Developer’s Conference 2012
SEPTEMBER 28–29
FLORIANÓPOLIS, BRAZIL
One of Brazil’s largest developer
conferences, with locations in São
Paulo, Florianópolis, and Goiânia,
The Developer’s Conference offers
dozens of tracks, several of which
are Java related, to more than
6,000 attendees.

The 2011–2012 Java Olympics
wrapped up on April 28 with a
dramatic final round at Kazakh-
British Technical University in
Almaty, Kazakhstan. Out of 1,573
students from 322 universities
who participated in Round One,
only 21 advanced to Round Three,
the finals. Only three of these
would take home a prize.

After a grueling four hours of
testing in which the contestants
had to solve five problems, Igor
Ignatiev (above left), a student
at Chelyabinsk State University
in Russia, won first place. He had
correctly solved four of the five
questions in the first 90 minutes
of the competition and appeared
to have the contest locked up. But
he struggled with the last ques-
tion while the rest of the field
advanced on him. In the end,
Ignatiev prevailed. Peter Pchelko
and Andrey Misnik finished sec-
ond and third, respectively.

JAVA OLYMPICS
FINAL ROUND
RESULTS

http://www.oracle.com/javamagazine
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
http://oracle.com/javaone
http://qconsp.com/
http://lanyrd.com/profile/martinfowler/
http://lanyrd.com/profile/holman
http://www.nofluffjuststuff.com/home/main
http://www.nofluffjuststuff.com/home/main
http://www.nofluffjuststuff.com/conference/raleigh/2012/08/coming_soon
http://www.nofluffjuststuff.com/conference/raleigh/2012/08/coming_soon
http://www.nofluffjuststuff.com/conference/seattle/2012/09/coming_soon
http://www.nofluffjuststuff.com/conference/seattle/2012/09/coming_soon
http://www.nofluffjuststuff.com/conference/boston/2012/09/coming_soon
http://www.nofluffjuststuff.com/conference/atlanta/2012/09/coming_soon
http://www.nofluffjuststuff.com/conference/atlanta/2012/09/coming_soon
http://www.web-developer-conference.de/
http://www.web-developer-conference.de/
http://ongamestart.com/
http://lanyrd.com/profile/mapagella/
http://lanyrd.com/profile/jerome_etienne/
http://lanyrd.com/profile/swingpants/
http://lanyrd.com/profile/29a_ch/
http://lanyrd.com/profile/jmechner/
http://lanyrd.com/profile/jmechner/
http://www.thedevelopersconference.com.br/#geral

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

CO
M

M
U

N
IT

Y

10

JA
VA

 T
EC

H
AB

OU
T

US
JA

VA
 IN

 A
CT

IO
N

blog

//java nation /
JAVA BOOKS

JAVA EE 6 COOKBOOK FOR
SECURING, TUNING, AND
EXTENDING ENTERPRISE
APPLICATIONS
By Mick Knutson
Packt Publishing (May 2012)

Java EE is a widely used
platform for enterprise server
programming in the Java pro-
gramming language, and this
book covers recipes on secur-
ing, tuning, and extending
enterprise applications using
a Java EE 6 implementation.
It begins with the essential
changes in Java EE 6 and
dives into the implementa-
tion of some of the new fea-
tures of the Java Persistence
API (JPA) 2.0 specification.
There are several additional
sections that describe some
of the subtle issues encoun-
tered, tips, and extension
points for starting your own
JPA application, or extending
an existing application.

JAVA APPLICATION
ARCHITECTURE:
MODULARITY PATTERNS
WITH EXAMPLES USING OSGI
By Kirk Knoernschild
Prentice Hall Professional
(March 2012)

Over the past several years,
module frameworks have
been gaining traction on
the Java platform. Java
Application Architecture lays
the foundation you’ll need to
incorporate modular design
thinking into your develop-
ment initiatives. Before he
walks you through 18 patterns
that will help you architect
modular software, author
Kirk Knoernschild lays a solid
foundation that shows you
why modularity is a critical
weapon in your arsenal of
design tools. Throughout,
you’ll find examples that
illustrate the concepts.

BEGINNING JAVA 7
By Jeff Friesen
Apress (November 2011)

Jeff Friesen’s Beginning
Java 7 gets you coding with
the new Java 7, Oracle’s lat-
est release of the popular
Java language and platform.
It is the definitive guide to
the Java language and the
numerous APIs that you’ll
need to master to become
an accomplished Java devel-
oper. The book begins with
an introduction to Java and
focuses on fundamental
concepts of the Java language
such as comments, identi-
fiers, variables, expressions,
and statements. Other topics
in the book include classes
and objects, advanced lan-
guage features, language
APIs, collecting objects, and
much more.

JAVA 7 RECIPES: A PROBLEM-
SOLUTION APPROACH
By Josh Juneau, Carl Dea, Freddy
Guime, and John O’Conner
Apress (January 2012)

This book offers solutions
to common programming
problems you may have
encountered while develop-
ing Java-based applications.
Updated to cover the new-
est features and techniques,
Java 7 Recipes provides code
examples involving Servlets,
JavaFX 2.0, XML, Swing, and
more. This book uses the
popular problem-solution
format: you can look up
the specific programming
problem you want to solve,
read the solution, and apply
that solution directly in your
own code. The authors focus
on problems and solutions
rather than on the Java pro-
gramming language itself.

SINGING JAVA’S
PRAISES
The community spirit Zoran Severac
experienced at JavaOne 2011 was the
inspiration behind his smash hit (more
than 5,000 views on YouTube) “Java
People.” The song itself is free and
open source. “You can listen to it, play
it, modify it, and use it for commercial
and noncommercial purposes for free
as long as you put some reference to the
original song,” says Severac.

“Java People” and its community
concept impressed so many of us here
at Java Magazine that we’re opening
a general Java Nation call for songs. If
you’re a songwriter who, like Severac,
appreciates Java and the Java commu-
nity, start composing! Send us links to
your Java Nation anthem.

Watch Zoran Severac perform his ode to
the Java community, “Java People.”

http://www.oracle.com/javamagazine
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
http://www.packtpub.com/java-ee6-securing-tuning-extending-enterprise-applications-cookbook/book
http://www.packtpub.com/java-ee6-securing-tuning-extending-enterprise-applications-cookbook/book
http://www.packtpub.com/java-ee6-securing-tuning-extending-enterprise-applications-cookbook/book
http://www.packtpub.com/java-ee6-securing-tuning-extending-enterprise-applications-cookbook/book
http://www.informit.com/articles/article.aspx?p=1850815
http://www.informit.com/articles/article.aspx?p=1850815
http://www.informit.com/articles/article.aspx?p=1850815
http://www.informit.com/articles/article.aspx?p=1850815
http://www.apress.com/9781430239093
http://www.apress.com/9781430240563
http://www.apress.com/9781430240563
https://sites.google.com/site/nbugserbia/java-people
https://sites.google.com/site/nbugserbia/java-people
mailto:javamag_us%40oracle.com?subject=
mailto:javamag_us%40oracle.com?subject=
javascript:openPopup('video_p10')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

11

blog

CO
M

M
U

N
IT

Y
JA

VA
 T

EC
H

AB
OU

T
US

JA
VA

 IN
 A

CT
IO

N

JCP Executive Series

A Conversation
with Gil Tene

In the first of a series of
interviews with distin-
guished members of the

Executive Committee of the
Java Community Process (JCP),
we sat down with Azul Systems
CTO and Cofounder Gil Tene,
who represents Azul on the JCP,
to get his take on how things
are going with Java and the JCP.
Azul Systems, a builder of highly
scalable Java Virtual Machines
(JVMs), has been a JCP member
since 2003 and a member of
the Executive Committee since
November 2011.

Azul Systems CTO Gil Tene discusses the state of Java and the JCP.
BY JANICE J. HEISS

Java Magazine: Tell us a little about your day job.
Tene: I’m the CTO of Azul Systems, and at Azul
we focus on building highly scalable JVMs. So our
world is Java and only Java, which is why the JCP
and the Java community are central to everything
we do. Over the years, we’ve delivered massively
scalable JVMs that can run on platforms with
anywhere from a couple to almost a thousand
CPU cores, and a handful to hundreds and thou-
sands of gigabytes of memory. We’re probably
best known for our very concurrent garbage col-
lection and the effective elimination of garbage
collection pauses as an issue for response-time-
sensitive enterprise Java applications.

I mix both hands-on engineering, where I
work within and with the teams at Azul, and a
lot of external activity involving conferences and
papers and customer interaction. I’ve been doing
this at Azul for about 10 years, and it’s the most
fun that I’ve ever had at a job. Azul is like a toy
store for engineers. I’ve specifically worked on
various parts of scalable JVMs, including every-
thing from concurrent garbage collectors to
locking and transactional memory. We’ve always
had the approach of doing “whatever it takes”
for runtime scalability. I’ve built kernel code and
advanced virtual memory management code,

PHOTOGRAPHY BY MARGOT HARTFORD

Gil Tene, CTO of Azul Systems,
prepares for a Webcast at
company headquarters in
Sunnyvale, California.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

12

blog

CO
M

M
U

N
IT

Y
JA

VA
 T

EC
H

AB
OU

T
US

JA
VA

 IN
 A

CT
IO

N

designed new processor features
and instructions, and played a
lot with virtualization.

For the last couple of years,
Azul has focused more on
software-centric products, so
the future trajectory of the Java
platform has become increas-
ingly more important to us.
We want to contribute to the
leadership of the JCP, rather
than just being followers. We’ve
been moving closer and closer
to the leading edge with Java. As
our software is now consumed by more and
more people, developers want to interact
with it more. While we support a lot of Java
EE activity, our technical focus is on Java SE,
where we hold the most expertise.
Java Magazine: What are your main concerns
about the JCP?
Tene: We’ve been members of the JCP for
about nine years. We joined the Executive
Committee in 2011 in an effort to become
more active in the process. Like the rest of the
community, we had concerns about the shifts
in the platform that might occur with Oracle’s
acquisition of Sun, so rather than sit on the
sidelines and watch it happen, we decided to
actively participate. Our concern is to make
sure that the JCP is not dominated by a single
company and that the JCP is not just a rubber
stamp for Oracle—something that I believe
Oracle does not want to have happen either.

That requires participation at
all levels from JCP members—
from executive participation
shaping process, rules, and
governance; from expert groups
in standardization efforts; all
the way to people developing
code and contributing in differ-
ent ways. We don’t want to see
Java become a single-company
platform, which means the
community has to contribute to
the leadership.
Java Magazine: How should the

JCP walk the fine line between encouraging
innovation and creating stable standards?
Tene: The two are not necessarily contradic-
tory, but sometimes they are. Personally, I

think that staying within the scope that the
JCP, as a standards and community body, is
able to credibly work and be productive in
is very important. You may have seen the
recent discussions about the Social Media
API, JSR 357, which was about the need for a
standard Social Media API for Java that the
Executive Committee rejected in an 8-to-5
vote. We took a position against it. I think
the JCP should innovate in areas that are
under its control and scope, and when it can
assemble credible expert groups that lead
the industry in the subject matter involved.
But I also think the JCP should not attempt to
innovate outside of those boundaries. Having
the JCP try to standardize things that extend
far beyond the Java platform and that are in
a state of flux is, in my opinion, fundamen-

ON INNOVATION

The JCP is certainly
a place to have
innovation happen. . . .
But we should focus
that innovation on
the parts that are
under our control and
within the purview
of what the JCP is
intended to do.

Tene and members of Azul’s
engineering team discuss
a current project. All team
members receive a white lab
coat after four years at Azul.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jcp.org/en/jsr/detail?id=357

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

13

blog

CO
M

M
U

N
IT

Y
JA

VA
 T

EC
H

AB
OU

T
US

JA
VA

 IN
 A

CT
IO

N

tally wrong, and will just result in a standard
nobody uses.

The JCP is there to move the Java platform
forward, but in areas where industry efforts
already exist to stabilize, model, and stan-
dardize behavior, the JCP’s role is to follow
and not to lead. Imagine the JCP trying to
standardize XML while “in flux” and before
the W3C decided what the standards should
look like. The JCP is not the right
place to standardize those, but
it’s certainly the right place to
incorporate external standards
with APIs for Java.
Java Magazine: How can we
increase community participa-
tion in the JCP?
Tene: There are many ideas
flying around. I think the JCP is
certainly a place to have innova-
tion happen—nobody else will
innovate in the Java platform
for us. But we should focus that
innovation on the parts that are
under our control and within
the purview of what the JCP is
intended to do. For example,
if we want a future version of
Java SE to have certain features
with new syntax or new capabilities or APIs,
or define new ways for containers to work in
the Java EE space, the JCP is the only place
to standardize that. We can prototype it and
work within Java.net and within open source
communities and play with implementations,
but as far as defining the Java platform and
its features, the JCP is it.

So tying into community development and
innovation efforts and helping them natu-
rally flow through the JCP’s process is, in my

opinion, our best shot at maintaining and
increasing community participation while
doing the job the JCP is meant to do.
Java Magazine: What are some key issues that
the JCP needs to address?
Tene: There are clarification issues related to
licensing, IP accessibility, and transparency
that have been a concern for many people.
The JCP has taken some good steps in the

Executive Committee, and
the JCP.next effort has begun
addressing transparency and
other process rules specifi-
cally with JSR 348. This leads to
greater transparency in working
groups. It’s a good first step,
but there are future second and
third steps required in the JCP
.next process. Some of these are
structural and procedural, while
some are more fundamental
and about clarifying issues
around accessibility of the actual
implementations of the TCKs
[technology compatibility kits],
what the rules are, and what
spec leads will do in order to
provide access. This is dangerous
territory because there are a lot

of very strong opinions.
On the one hand, we have people who

want to force the whole thing to be open
sourced. I, for one, don’t believe that’s a
viable path, and I think that an environment
that allows solutions to take any form is the
right way for a standard to work. Whether an
implementation is proprietary, for profit, and
highly controlled, or open source and free, we
should be able to implement and adhere to
the same standards.

ON COMMUNITY

Tying into community
development and
innovation efforts and
helping them naturally
flow through the
JCP’s process is, in my
opinion, our best shot
at maintaining and
increasing community
participation while
doing the job the JCP
is meant to do.

Tene and an Azul engineer brainstorm while working
with magnetic building tools.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jcp.org/en/jsr/detail?id=348

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

14

blog

CO
M

M
U

N
IT

Y
JA

VA
 T

EC
H

AB
OU

T
US

JA
VA

 IN
 A

CT
IO

N

So I don’t think that the JCP should be dic-
tating specific license terms or saying specifi-
cally that certain licenses are allowed or not.
But I do think that some guidelines and some
boundaries are needed. For example, reliable
and lasting access to TCKs under a known,
predictable set of terms is a fundamental
need for companies, projects, and individu-
als to invest in implementing and following
a standard under the JCP. We should clearly
and strongly define the minimal require-
ments that JSRs should meet for providing
such access. We’ve seen over the last few
years a lot of stagnation.
Java Magazine: Has Oracle delivered on the
promise of increased transparency and open-
ness in the JCP?

Tene: I would say that Oracle is in the process
of delivering. I wouldn’t say it has delivered.
We see a lot of promise and very good inten-
tions, but it’s still too early to say that we see
actual results. As part of the community,
we look at this as something we continu-
ously have to watch. Part of our role in the
Executive Committee is to be that external,
non-Oracle watchful eye that points out
when we’re heading in the wrong direction.

Let’s be specific. We certainly have seen
the JCP deliver on JSR 348 and improved rules
and improved transparency so that commu-
nity efforts will match what the community
wants. But the process is only about half
done. We still have more work to do in rela-
tion to things like the JSPA [Java Specification
Participation Agreement] document that will
be addressed in a future JSR.

The specific areas that we are concerned
with are in-flux situations where the new
rules that we’ve put in place actually contra-
dict the previous way we’ve been working.
So things that were fine a year ago under the
previous process are now in contradiction
with the new rules. And some of that has
not yet been resolved. New rules that control
what we can or can’t do can stand in the way
of doing work that we were previously able
to do. For example, including confidential
information in the materials discussed and
worked on by JSR expert groups stands, in my
opinion, in contradiction with the transpar-
ency rules and requirements of JCP 2.8 and

JSR 348, but the JSPA in some cases allows
and sometimes even requires expert group
members to maintain levels of confidential-
ity around work that is material to a JSR. This
sort of contradiction can potentially bring JSR
work to a halt if we do not resolve it through
rule changes and the JCP.next efforts.
Java Magazine: Do you think there’s a percep-
tion in the IT community that Java is aging
or that some other language or platform will
replace it soon?
Tene: Yes, I think that there is a perception
that Java is aging. There’s a lot of talk about it
slowing in innovation. The interesting thing is
that one usually hears this sort of thing in the
context of some new technology that is actu-
ally overtaking and replacing an older plat-
form. But I think that this is not the case with
the Java platform. The Java platform has been
around for 17 years and has been enormously
successful. Two or three years after Java first
emerged, it was already clear that it was dis-
placing other development and deployment
platforms. I don’t currently see some other
emerging platform that is threatening Java
like Java threatened other platforms. There
are many interesting new developments in
dynamic and functional languages, rapid
development techniques, and other inno-
vations that are not necessarily in the Java
language, but the vast majority of those tend
to target and run on the Java platform rather
than threatening it. </article>

Janice J. Heiss is the Java acquisitions editor at
Oracle and a technology editor at Java Magazine.

LEARN MORE
•	 Java Community Process

Tene chats with a
member of Azul’s
engineering team.

ON FOLLOWING

The JCP is there
to move the Java
platform forward,
but in areas where
industry efforts
already exist to
stabilize, model,
and standardize
behavior, the JCP’s
role is to follow and
not to lead.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jcp.org

Request free trials at
MelissaData.com/myjava or call 1-800-MELISSA

Now, finding the right data verification tools doesn’t have to be so puzzling.

Melissa Data offers customizable APIs, Web services and enterprise appli-

cations to match your budget and business needs. For solutions to cleanse,

validate and standardize your contact data, we’re ready to help you find the

perfect fit.

• Global address verification for 240 countries

• Clean and validate data at point-of-entry or in batch

• Enhance addresses with County, Census, FIPS, etc.

• Append rooftop lat/long coordinates to street addresses

• Update records with USPS and Canadian change of address info

• Correct misspellings, missing directionals, and confirm deliverability

Data Quality Tools for Java

Address Verification &
Standardization

Telephone Verification

Duplicate Elimination

Email Address Verification

Web Services & APIs

Geocoding

Name Parsing & Genderizing

Melissa Data Corp.
John Smith III PhD
22382 Avenida Empresa Ste 100
Rancho Santa Margarita, CA 92688-2112
949-589-5200
John@melissadata.com
Delivery Indicator: Business
*Highlights indicate added and/or corrected data.

john smith iii phd
melissa data corp.
22382 Empresa 92688
7145895200
john@800miAL.con

BEFORE

AFTER

Realtime NCOALink

Change-of-Address
Web Service

available

http://MelissaData.com/myjava
mailto:John@melissadata.com
mailto:john@800mial.com

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

16

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
JA

VA
 T

EC
H

AB
OU

T
US

blog

If you want to change the world, you need
to start with a mission that everybody
can understand. Similarly, if you want

to change the face of analytics, you need a
simple paradigm that people can quickly
comprehend. You don’t invent a new pro-
gramming language or craft a radical user
interface; instead, you leverage the existing
productivity tools that people know and love.

It was precisely this philosophy that moti-
vated Agust Egilsson to develop QuantCell, a
software environment for constructing visu-
ally rich models and big data analytics and
applications. Rather than devising a new pro-
gramming motif, Egilsson adopted one that
animates businesses everywhere: the familiar
spreadsheet interface. And instead of writing
a new integrated development environment,
he appropriated Java, the most versatile
programming language of the modern age.
The result is a powerful end-user environ-
ment that lets researchers, analysts, domain
experts, and developers analyze any type of
data in a fast, compelling way.

PHOTOGRAPHY BY THORSTEN HENN

Building a Better Spreadsheet
Java powers analytic breakthroughs
at QuantCell Research.
BY DAVID BAUM

(Left to
right) Agust
Egilsson, Kris
Thorleifsson,
and Bjorn
Jonsson at
QuantCell
Research
headquarters
in Reykjavik,
Iceland

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.quantcell.com

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

17

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
JA

VA
 T

EC
H

AB
OU

T
US

blog

“Observing quantitative analysts in the
financial services industry, it was clear that
people preferred to use spreadsheets for
everything that they could,” Egilsson explains.
“So we set out to build an analytics and data
visualization environment that preserves the
benefits of the spreadsheet, such as short
turnaround times, and addresses all of its
shortcomings, such as the need to rely on the
IT department for advanced functionality.”

It’s an area that Egilsson knows well. After
receiving his doctoral degree in mathematics
from the University of California at Berkeley,
he delved into quantitative research and risk
management for financial services institutions
and biotechnology firms. He was soon joined
in this endeavor by Kris Thorleifsson, a former
Java product manager at Sun Microsystems
with a background in cloud computing. After
earning his MBA from Houston, Texas–based

Rice University, Thorleifsson
had served as CMO of the
Dohop.com travel search engine
and held senior management
positions in the financial ser-
vices industry before sign-
ing on with Egilsson to found
QuantCell Research.

The pair had big ideas and
an even bigger goal: to build a
better risk-analysis system fol-
lowing the near collapse of the
global financial industry. As the
principal author and developer
of the QuantCell environment,

Egilsson had already been working with a pro-
totype of the QuantCell system, both in invest-
ment banking and academia. Now he set his
sights on one of the holy grails of computing:
a programming environment
that would allow nondevelop-
ers to create powerful models
and applications on par with
those created by IT experts.

Victor Grazi, a vice president
at Credit Suisse in New York,
New York, has been testing
an alpha version of QuantCell
as a potential way to simplify
corporate valuation exer-
cises. Grazi has been a Java
developer since 1995 and has
worked in the financial indus-
try since 2000.

“In the Credit Suisse Holt

division, we work with fund managers to
analyze their portfolios and make recom-
mendations,” Grazi explains. “Our valuations
yield thousands of variables, including statis-
tics about a company’s financial statements,
projections, and ROI.”

Typically a programmer must sit down with
an analyst to plug all these variables into a
custom program, but Grazi says QuantCell
allows people with very little programming
experience to achieve the same results within
an intuitive spreadsheet environment.

“You can include libraries in the QuantCell
spreadsheet and link cells to generate a tre-
mendous amount of statistics,” Grazi explains.
“All of a sudden an analyst becomes a pro-
grammer. We have our own visualization and
charting routines that users can access just by
double-clicking on a cell. It’s very convenient.”

A FLEXIBLE FOUNDATION
By basing their solution on Java, QuantCell’s
founders gained instant support from an
extremely large, well-informed, and gener-

ous developer community—
aggregating a huge portion
of the world’s quantitative
knowledge into their user-
friendly environment. Thanks
to the rich and ever-evolving
Java ecosystem, hundreds
of thousands of algorithms,
processes, and methods are
available for use with the
QuantCell system.

“QuantCell can execute Java
code snippets within spread-
sheet cells, either entered
directly by the user or created
using end-user formula wiz-

Thorleifsson and Egilsson
discuss QuantCell capabilities
with a team member.

SNAPSHOT
QUANTCELL
RESEARCH
quantcell.com

Headquarters:
Reykjavik, Iceland
Industry:
Technology
Java version used:
Java SE 7

YEARS OF RESEARCH

“�We are opening the
door for nondevelopers
to take advantage of
many years of research
and Java coding by
some of the world’s
best researchers and
institutions.”
 —Agust Egilsson, Cofounder,
QuantCell Research

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.credit-suisse.com/us/en/
http://quantcell.com
http://Dohop.com

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

18

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
JA

VA
 T

EC
H

AB
OU

T
US

blog

ards,” says Thorleifsson. “The code is assem-
bled, tested, and compiled one expression at
a time, improving quality, shortening devel-
opment time, and alleviating user-interface
design chores.”

QuantCell also enables direct access
to some of the world’s most important
data providers, such as Thomson Reuters,
Bloomberg, and Xignite—allowing people to

search for data and make that data available
for further analysis with one click.

The QuantCell environment creates Java
classes or Java archive (JAR) files that can
be deployed directly into any Java produc-
tion system or are deployed automatically
to cloud computing infrastructures such as
Apache Hadoop. Unlike the lock-in typical
with other systems, QuantCell models are
independent of the environment and sup-
port open standards. They can also connect
to their own private relational databases or
semistructured datasources.

HOW IT WORKS
Novice users interact with QuantCell much
like an online spreadsheet application, using
UI wizards that generate Java, SQL, Python, or
R-like expressions in conjunction with a rich
knowledgebase of methods. The expressions
in turn create Java objects in the spreadsheet
cells such as mappers, reducers, tables,
databases, images, multimedia, data cubes,
compute clouds, and Java classes. Users visu-
alize the objects via various UI controls such
as charts and graphs, a table frame control, a
database browser, a data cube viewer, a 3-D
protein image viewer, a chemical structure
visualization control, a spatial image control,
and many other specialized components.

“We didn’t initially understand what
QuantCell was, but as soon as we figured out
that the cell is actually the variable that con-
tains the object, we began to see its poten-
tial,” Grazi notes. “You can put any Java object
into a spreadsheet cell and then refer to that
object through another cell. To do something
similar in another analytic environment is
much more complex.”

Experienced users can write their own

functions to return objects to the cells, select-
ing components from a knowledgebase of
externally and internally created Java libraries.
For example, the company is creating a com-
ponent browser to access pricing components
for complex financial products and derivatives
such as algorithms, payoffs, and simulation
components. Advanced users can develop
and deploy Java solutions as Web services as
they create computationally intense projects
requiring access to various datasources, algo-
rithms, and computational clouds.

“Models and apps built in QuantCell are
pure Java APIs that can be deployed into exist-
ing Java-based production systems or as Web
services,” explains Egilsson. “They run on the
Java virtual engine and are therefore easily
deployed into existing production systems as
a Web service. Some of our early adopters are
particularly excited about the ability to deploy
custom MapReduce algorithms directly to
Hadoop cloud installations from the spread-
sheet interface.”

ENRICHING THE BREW
QuantCell inherits its visual character-
istic from JavaFX. Egilsson says he and
Thorleifsson decided to use JavaFX because
it lets people easily access existing Java APIs
and because of its support for rich graphics,
animations, and effects. “JavaFX is instru-
mental in bringing rich visualization meth-
ods to the spreadsheet,” he says. “It’s also
universal, since it runs on the world’s most
widely used operating systems and supports
all the major browsers.”

In addition, JavaFX takes advantage of the
computational power available locally on
each user’s machine, and each user can run
complex computations locally in the Java

Egilsson and
Thorleifsson catch up
on company business
outside of QuantCell
Research headquarters.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://thomsonreuters.com/
http://www.bloomberg.com/
http://www.xignite.com/
http://hadoop.apache.org/
http://hadoop.apache.org/mapreduce/

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

19

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
JA

VA
 T

EC
H

AB
OU

T
US

blog

Virtual Machine (JVM) instead of relying on
remote servers. For instance, users can view
a 3-D image of a protein or an oil field, which
would be less robust if the application were
only server-based. “JavaFX delivers the per-
formance we need and provides excellent UI
controls right out of the box,” Egilsson adds.

INDUSTRY APPLICATIONS
QuantCell Research is initially marketing its
solution to finance professionals immersed in
portfolio and risk analysis, because the solu-
tion lets those users take advantage of existing
Java-based “quant” libraries—along with other
Java-based libraries, such as the MapReduce
framework for big data analytics. This versatile
architecture lets them easily build advanced
models and financial products faster and
cheaper, and with less reliance on IT.

The company is also expanding into the
life sciences industry, where alpha and beta
users have found QuantCell ideal for analyz-
ing genetic sequences, proteins, and markers.

“QuantCell’s spreadsheet-based environ-
ment is a convenient way to engage non-
experts in complex analytical research,” says
Dr. Styrmir Sigurjonsson, a senior statistician
at Natera, a life science company based in
Redwood City, California, involved in prenatal
genetic testing. “A statistician can develop
algorithms based on lab data and then pass
the QuantCell spreadsheet back to the lab
researcher to continue the analysis. You can
get to a whole new level of complexity with-
out having to bog down the researchers with
that complexity.”

Natera currently uses MATLAB, a popular
numerical computing environment and pro-
gramming language, to develop its prenatal
testing products. Sigurjonsson likes MATLAB’s

flexibility, saying researchers can “stop in the
middle of a program, run other programs, and
manipulate the data any way they like.” He has
been testing an alpha version of QuantCell to
see if it can fulfill this same role in a Java envi-
ronment. So far, he likes what he sees.

“Productizing something created in
MATLAB is not a trivial process, but QuantCell
will make the deployment more convenient,”
Sigurjonsson explains. “For example, in one
cell you can get the data; in the next several
cells you can analyze it; and then you can pull
in off-the-shelf statistical pack-
ages, libraries, and visualization
tools. You can develop an algo-
rithm and deploy a JAR file right
out of the system, so you have a
deployed version that is ready for
testing. I think it can save signifi-
cant amounts of time in produc-
tization—perhaps as much as 60
or 70 percent.”

QuantCell also supports long-
running concurrent operations,
allowing researchers to continue
to work in a spreadsheet while the system
crunches data from either a local database or
a remote cloud.

COMMUNITY SUPPORT
As QuantCell gains momentum in anticipa-
tion of a production release later in 2012, the
company is banking on continued support
from the Java community to deliver a large and
robust ecosystem of computational solutions.

“We decided to use Java in large part due
to the dynamic nature of Java compilation,
lazy class loading, concurrency in Java, and
optimization in the VM such as just-in-time
compilation,” says Thorleifsson. “The many

available libraries and the Java Community
Process will keep this community thriving for
a long time.”

It’s already a thriving ecosystem, fed largely
by Java experts at universities and open source
communities, which continue to contribute
advanced analytic libraries. Popular examples
include artificial intelligence and machine
learning (Apache Mahout, Java-ML, and
Weka), biotechnology (BioJava), and financial
mathematics (jQuantLib). Unfortunately,
most of these libraries are not immediately

usable by biotech researchers,
financial analysts, and other
domain specialists, who must
depend on skilled programmers
to build custom applications for
each analytical project.

QuantCell changes all that.
All Java APIs, libraries, and tools
work with QuantCell right out of
the box. End users can call upon
these libraries just by adding
them to the classpath, expand-
ing QuantCell’s existing catalog

of libraries, algorithms, and methods.
Applications and APIs created in NetBeans

or Eclipse can be moved into the QuantCell
environment for further work or testing, and
those assembled in QuantCell can be moved
into NetBeans for further development.

In short, QuantCell finds itself at the inter-
section of usability and functionality as it
helps people of all skill levels take advantage
of these rich analytic libraries on the one
hand, and advanced data visualization tools
on the other. </article>

BRIGHT FUTURE

“�It is early on, but
we are excited
about QuantCell’s
potential.”
 —Victor Grazi, Vice
President, Credit Suisse

David Baum is a freelance business, technology, and
lifestyle writer in Santa Barbara, California.

Agust Egilsson
talks with author
David Baum about
QuantCell.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.natera.com/
http://www.mathworks.com/products/matlab/
http://mahout.apache.org/
http://java-ml.sourceforge.net/
http://www.cs.waikato.ac.nz/ml/weka/index.html
http://biojava.org/wiki/Main_Page
http://www.jquantlib.org/index.php/Main_Page
mailto:dwbaum%40mac.com?subject=
javascript:openPopup('video_p19')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

20

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
JA

VA
 T

EC
H

AB
OU

T
US

blog

PHOTOGRAPHY BY CATHERINE GIBBONS

Making online travel reservations seems
straightforward enough: The prospec-
tive traveler enters a desired itinerary

and is typically presented with a screenful of
options, including choices, prices, photos, and
more—all in a matter of seconds. From these
options, the traveler makes a decision. Simple
enough, right?

For online travel leader priceline.com,
Java provides the maximum connectivity,
flexibility, performance, and portability.
BY PHILIP J. GILL

Direct
Connection

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://priceline.com

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

21

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
JA

VA
 T

EC
H

AB
OU

T
US

blog

For online travel sites, how-
ever, that up-front simplicity
belies the complexity behind
the screen. At priceline.com,
for example, a simple query
sets off a complex series of
hundreds of interactions and
connections to multiple hotel,
airline, and other reservation
systems around the world,
explains Michael Diliberto, CIO
for the North America division
of the Norwalk, Connecticut–
based firm.

“We work with thousands
of suppliers and affiliates over
multiple distribution plat-
forms,” says Diliberto. “We
need to connect our system to
the appropriate supply inven-
tory, so that means direct
connections to rental car
companies such as Hertz, Avis,
Alamo—and to large global
distribution systems [GDSs]
such as Travelport or even a
smaller new GDS such as Farelogix, to get
access to the freshest inventory for hotels,
rental cars, and airline seats.”

“A search for hotel deals in New York
City can generate up to 500 simultaneous
requests to suppliers’ systems,” Diliberto
adds. Multiply that by thousands of custom-
ers querying the system simultaneously, and
it’s easy to see that the core of priceline
.com’s business is its ability to manage the
complex matrix of connections between
priceline.com’s customers and suppliers.
And the secret to making those connections
work so seamlessly and to making it all look

so easy in near real time is Java. “For us, Java
has become a way of life,” says Diliberto.
“Java provides us the ability to connect with
other travel resources around the world more
effectively and efficiently.”

BEHIND THE SCREENS
Priceline.com, the online travel business that
made “Name Your Own Price” famous, is one
of the world’s leading online travel services,
offering everything from hotel rooms to
airline tickets, rental cars, vacation packages,
and even cruises. It was founded in 1997 and
a year later launched its travel services with

SNAPSHOT
PRICELINE.COM
priceline.com

Headquarters:
Norwalk, Connecticut
Industry:
Online travel services
Revenue:
US$4.36 billion in 2011
Employees:
350 in the priceline.com
business unit, 3,400
worldwide
Java version used:
JDK 6 and JDK 7

Priceline CIO Michael Diliberto (left)
and Vice President of Engineering
Amit Poddar discuss project status
in front of the company’s analytics
dashboards.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.priceline.com/
http://www.travelport.com/
http://www.farelogix.com/
http://priceline.com

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

22

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
JA

VA
 T

EC
H

AB
OU

T
US

blog

the help of celebrity pitchman
William Shatner.

In the late 1990s, there were
a number of technologies
available for building dynamic,
interactive Websites. These
included Java as well as Perl,
PHP, and Microsoft’s COM
and Active Server Pages (ASP).
Although Java was less mature—it had only
been introduced in 1995—than the others,
Diliberto saw great potential in the language
and the development platform, not the least
of which was its promise of portability and
vendor independence. In the end, the com-
pany chose a three-tier design: Java at the
back end, Oracle for database management,
and COM and ASP at the front end.

According to Diliberto,
Java was ideal for the back-
end inventory search engines
because of its exceptional con-
nectivity and multithreading
capabilities.

“Right from the very begin-
ning, our back-end com-
munications to our suppliers

has been designed and developed on a Java
platform,” says Diliberto. “Java supports a
variety of different communication protocols
to interface with suppliers, so that we can go
where the data is—in our case, connecting to
GDSs, airlines, hotel partners, and chains—to
get the freshest inventory at the best price.”

The combination of Java and Microsoft
technologies worked fine for the first few

years, but priceline.com had a change of
heart in 2000.

“We realized that having a different tech-
nology platform for front end and back
end was not the way to go,” explains Amit
Poddar, vice president of engineering at
priceline.com. “We needed to consolidate on
one platform to avoid unnecessary overhead
of data transformations and to utilize our tal-
ent pool more effectively.”

The priceline.com team evaluated mul-
tiple enterprise platforms for performance,
interoperability, and availability of tools and
programmers. Java was a clear winner. Since
then, all major enhancements to the price-
line.com Website have been coded in Java.

SEARCH SMARTER, NOT HARDER
Over the years, priceline.com grew from its
travel bidding model into a full-service online
travel company that includes published price
and Name Your Own Price travel services.
“Priceline.com is the only travel site on the
internet to offer both options for travelers,”
notes Diliberto.

To present various travel options to their
consumers in real time, priceline.com devel-
oped a proprietary “smart search” system
using Java’s multithreading framework. The
system acts like an inventory switch, says
Poddar. “On one side are our customers,
including Priceline-owned Websites, affili-
ates, search engines such as Google, and
more recently mobile phones and tablets
such as iPad,” he continues. “On the other
side are hotels, airlines, car rental compa-
nies, and GDSs such as Travelport, Sabre, and
Pegasus, as well as startups like Farelogix.”

When a customer is searching for the best
hotel deals on priceline.com, says Poddar,

NOT SO SIMPLE

A single user query
on priceline.com
can generate up to
500 simultaneous
requests to suppliers.

For Diliberto and
Poddar, Java was
the answer to
consolidation needs
at priceline.com.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.sabretravelnetwork.com/home/
http://www.pegs.com

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

23

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
JA

VA
 T

EC
H

AB
OU

T
US

blog

behind the scenes the
priceline.com smart
search concurrently
fetches data from
various suppliers in
real time, sorts and
filters the combined
data, and presents the
best options to the
customer.

“It’s very important
that the inventory
we are presenting is
fresh,” Poddar adds,
“because there’s a lot
of competition in the
online travel space,
and if a customer finds
that our inventories
are stale, they’ll go to
another travel site and
book there.”

Not all suppliers
have the same inter-
face, Poddar explains,
but Java supports a
vast array of data for-
mats, transformation
tools, and communica-
tion protocols.

“With Java we can
easily receive data
from suppliers either
in SOAP wrapped XML

using HTTPS or in structured data records
over JMS,” he says. “We can then transform
that data using JAXB or other Java APIs into
Java beans. Then we compare those beans
to hundreds of other responses and create
a single response formatted in one of sev-

eral presentation mechanisms.
We could send the response
as a JSON object consumed by
Priceline’s app on a customer’s
iPad, or ship it in XML format to
one of Priceline’s affiliates.”

For this reason, adds Poddar,
“Java turns out to be the perfect
technology for a flexible inven-
tory switch.”

VENDOR INDEPENDENCE
Vendor independence was a key
criterion when selecting tech-
nology as well, and that’s where
competing technologies fell
short. “Instead of building a specific product,
Java defines a specification and lets multiple
vendors in the industry provide an imple-
mentation. This gives choice to customers,”
says Poddar.

From the start, priceline.com’s back-end
database has been an Oracle database.
But back in 2000, Oracle didn’t have what
priceline.com considered a viable Java driver
for that database. “We started using driv-
ers from one company,” says Poddar. “The
performance was OK, but we didn’t really
like it, so we moved to a second company.
Eventually Oracle came out with their own
drivers and we moved to them.”

“We were able to successfully replace one
implementation of the driver with another
without modifying a single line of code,”
Poddar says. “And that was possible because
of Java’s philosophy that you define a specifi-
cation and let the vendors do the implemen-
tation. This puts the customer in full control
and gives them the ability to find the right
itinerary for them.”

Over the years, as priceline
.com’s needs have changed, Java
has also enabled the company
to migrate its IT infrastructure
across three different hardware
architectures and three dif-
ferent operating systems with
little effort, Poddar adds. The
company launched in 1998 run-
ning on a Digital Equipment
Corporation AlphaServer with
Windows NT, then migrated to
SPARC–based servers running
Solaris (now Oracle Solaris), and
today operates on an array of HP
Intel–based blade servers run-

ning 64-bit Red Hat Linux.
“Java has enabled us to move from one

hardware platform to another quite eas-
ily,” says Poddar. “We didn’t have to involve
any of the Java programming teams for the
migration. It was completely done by the
support staff.”

Another important benefit is that Java is
open source. “Priceline.com is committed to
open source technology wherever and when-
ever possible as a way to maintain vendor
independence,” explains Diliberto.

Besides Java, the company’s IT infrastruc-
ture uses the Apache Tomcat Web server
and the Linux operating system. “Going
with open source technologies such as Java
as much as possible puts us in a good posi-
tion,” says Diliberto. “We feel that it gives us
an opportunity to select implementations
that are best of breed and the most effective
solutions.” </article>

Philip J. Gill is a San Diego, California–based free-
lance writer and editor.

GREAT MIGRATION

Priceline.com
has migrated its
Java applications
across three
different hardware
architectures and
three different
operating systems.

Oracle and Java:
A Good Marriage

Priceline.com has
been committed
to both Oracle
and Java tech-
nologies since the

Website was launched; indeed, today the site’s core
production transactional database is a 2 TB Oracle
database, and it also maintains a 17 TB Oracle data
warehouse. In total, the Norwalk, Connecticut–based
online travel agency has 96 unique instances of
Oracle Database in its IT shop, a configuration that
provides both high performance and high availability.

That’s why Michael Diliberto, the company’s CIO,
North America, sees Oracle’s acquisition of Sun and
its Java technologies as a good deal for both Java
users and the future of the platform.

“From the beginning, Oracle was committed to
the internet as a business platform,” says Diliberto.
“[Oracle CEO] Larry Ellison saw the power of the
internet and knew it was going to be a major piece
of the economy going forward, and he wanted to
prepare for it. And from a database standpoint, there
was always a solid commitment to creating the big-
gest, best-performing, and most scalable database
there could be.”

“We’ve always been big fans of Java as a technol-
ogy but had always been a little bit concerned about
its survival,” Diliberto continues. “With Oracle having
a solid track record of turning products into profit,
we’ve been encouraged that Oracle’s leadership sees
a future in Java and is willing to invest in it and drive
it forward, to keep it alive and to keep it growing. The
company has proven that over the last two years.
We’re very happy with the continued investment
that Oracle has been making in the Java platform.”

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

24

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//new to java /

In the previous issues of Java
Magazine, we went step by

step through a project of build-
ing a simple game in Java using
the Greenfoot environment.
Greenfoot is a great tool to
engage young learners by get-
ting them highly motivated very
quickly. The ease with which
we can put animated graphics
onscreen is a fantastic help in
drawing kids to programming.

This time, however, we want to
look at approaching the learning
and teaching of object-oriented
programming more systemati-
cally. To support this, we will use
another tool: BlueJ.

The strength of Greenfoot is a
quick, playful entry to program-
ming with immediate visual
results. The drawback, however,
is that there is a bit of magic
going on: some of the code is
provided by the environment
(the runtime framework), and the
type of program we can create is
restricted to two-dimensional
graphical applications.

We now grow up a bit and shift
to BlueJ. BlueJ is a generic devel-
opment environment—no code
is magically provided, and we can
develop any kind of application we
like. Thus, in its purpose, it is closer
to well-known professional IDEs,
such as NetBeans and Eclipse.
However, it is still an IDE focused
on learning object orientation, and
for a variety of reasons, it is much
better suited to beginners than
large professional environments.

In this article, I will provide an
overview of BlueJ, which is most
useful for those of you who can
already program and are looking
for a tool to teach programming
to beginners, either at the uni-
versity level, toward the end of
high school (for example, in an AP
computer science course), or in an
after-school programming club. I
will give you an idea what BlueJ is
and what it provides.

The best way to read this article
is to download BlueJ and install
it. Then download the “people”
project, and play along as we go.

In future issues of Java
Magazine, I will go through a
small project that can be used to
learn object-oriented program-
ming with BlueJ and Java.

Simplicity
The first question many people ask
when I talk about teaching object
orientation and Java to beginners
is, “Why not just use NetBeans or

Eclipse or (insert your own favorite
environment here)?” The answer
is that the requirements for an
environment for beginners are
significantly different than the
requirements for an environment
for professional programmers.

Many software tools that are
useful for professionals repre-
sent only clutter, confusion, and
unnecessary hurdles for begin-

A systematic and experimental approach to learning JavaMICHAEL KÖLLING
BIO

Figure 1PHOTOGRAPH BY JOHN BLYTHE

Part 1

Learning and Teaching Object
Orientation with BlueJ

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oraclejavamagazine-digital.com/javamagazine/20120506?folio=21
http://www.greenfoot.org/home
http://www.bluej.org/
http://www.bluej.org/download/download.html
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012
javascript:openPopup('bio_p24')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

25

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//new to java /

ners. With big, professional environ-
ments, students spend a large amount
of their brain power thinking about the
environment, rather than thinking about
programming concepts.

The first difference in BlueJ is its
simplicity (see Figure 1). Students feel
comfortable using the environment very
quickly, and we never teach about the
environment; we teach about concepts.
You will see what I mean when you start
BlueJ yourself. After only a few hours,
students are entirely comfortable using
the environment.

The Toolset
The second difference is the toolset
that is provided. Not only does BlueJ
provide fewer tools than professional
IDEs, it provides different tools. The
tools provided by BlueJ encourage and
support visualization, interaction, and
experimentation. They were designed by
experts in programming education with
educational theories in mind, and they
allow a different style of learning than
standard IDEs offer.

The tools include mechanisms for
active, direct experimentation with
objects. This is one of the
most fundamental function-
alities missing (from an edu-
cational viewpoint) in most
environments. Let’s have a
look at the most important
of them.

The Class Diagram
The first visual tool is appar-
ent immediately when you

open your first project: the class dia-
gram (see Figure 1). It is the main view
of the project and shows the classes in
the project and their relationships. The
diagram supports and reinforces think-
ing about class structures from the very
beginning. In early teaching, students
typically do not start with an empty
screen. Instead, they are given projects
(often partially implemented) to experi-
ment with and extend.

Interactive Object Instantiation
Once a class has been written and
compiled, we can right-click the class in
the diagram to see a context menu. This
menu offers any public constructor to
allow us to manually create an object of
this class (see Figure 2). If the construc-
tor has parameters, a dialog box pops up
to let us enter the necessary values.

Once an object has been created, it
appears (in red) on the object bench,
toward the bottom of the main win-
dow (see Figure 1). When teaching, it is
important to create multiple instances
of the same class—this makes it very
easy for students to see the difference
and the relationship between classes

and objects: From a class, we
can create an object. In fact,
we can create many objects.

When using traditional
environments, understand-
ing the difference between
classes and objects is one of
the concepts known to be
difficult for students. This is
not surprising if all they ever
look at is lines of code. The

visualizations and interactions in BlueJ
entirely remove this problem; students
just “get it.”

Object Interaction
Once an object has been created on the
object bench, we can interact with this
object by invoking its public methods
(see Figure 3). Again, if a method has
parameters, a dialog box allows us to
enter their values. Return values are
displayed for methods with results.

This easy manual interaction allows
a very quick and thorough testing of
code, which can be used to investigate
a project to find out what it does or to
test code that was just written to see
whether it behaves as expected.

Because testing is possible with-
out the need to write test drivers, the
hurdle to testing is much lower than in
traditional environments. Therefore,
students typically test earlier and more
often. Also, because results can be seen
during a test sequence, further tests can
be adjusted depending on the previous
result. This is not the case if tests were
executed from prewritten scripts.

Apart from better testing, the
interaction reinforces the following
most-fundamental principles of object-
oriented programming:
■■ A program consists of a set of inter-

acting objects.
■■ We communicate with objects by

invoking their methods.
■■ Methods are provided by the objects.
■■ Methods may have parameters and

return values.
■■ Parameters have types.

By interacting with objects, stu-
dents are conditioned to think in
terms of objects from Day One. This is
a fundamental reversal of traditional
approaches that use older textbooks and
standard IDEs.

Composition
Parameters to methods can be not only
predefined or primitive types; they can
also be objects. Figure 4 shows an exam-

Figure 2

Figure 3

Figure 4

SUPER EASY

BlueJ provides
probably the most
convenient method
of any environment
for creating JUnit
tests.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

26

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//new to java /

ple where a Person object is expected.
Any object present on the object bench
can be passed as a parameter (as long as
the type matches) by simply clicking it
when the parameter dialog box pops up.

State
BlueJ offers an inspector capability
that allows us to open an object and
look inside it (see Figure 5). It is highly
educational to look into two or three
objects of the same class and observe
their fields. We can see that they all have
the same fields, but their values differ.
We can even make calls to an object’s
methods while the inspector is open to
observe the values changing. This rein-
forces another important concept: state.

Yes, Really: No main Method
If you played along until now, and you’re
used to writing Java programs, you
will have noticed one thing: no main
method. Yes, that’s right: there is no
main method!

The main method is an extremely ugly
hack for connecting a Java program to
the operating system. It has nothing
whatsoever to do with object orientation
and has confused students ever since it
was first shown.

In BlueJ, we start with the clean prin-
ciples and add the idiosyncrasies of the
language later. You can, of course, have a
main method and use it if you want to. It
will appear (together with all public static
methods) in the class’ menu, where it
can be invoked. However, it is nothing
special and can be introduced if and
when students are ready to really under-
stand the meaning of public, static, void,
and String[].

The Code Pad
Another very useful educational tool is
the Code Pad. The Code Pad is visible at
the bottom right in Figure 1. It allows us
to type individual expressions or state-
ments, which are then immediately
executed. For expressions, the result
is immediately displayed in the Code
Pad. If the result is an object, it can be
dragged across to the object bench for
further investigation.

The Code Pad is very useful for stu-
dents to quickly and easily try out arbi-
trary code snippets to see what they do.

The Editor
BlueJ’s text editor highlights scopes,
such as methods, if statements, and
loops with different background color-
ing (see Figure 6). This is another edu-
cationally valuable visualization. The
coloring supports the understanding
of scoping, and errors in scope become
much more easily apparent.

Unit Testing
Unit testing (using JUnit) is closely inte-
grated in BlueJ. In fact, BlueJ provides

probably the most convenient method
of any environment for creating JUnit
tests. In addition to the standard writ-
ing of test classes, interactive testing
and regression testing can be combined.
We can perform a sequence of interac-
tive tests and record this interaction as a
JUnit test case to be replayed later.

We will discuss this functionality
in more detail in a later article in this
magazine.

Conclusion
In this article, I presented a quick over-
view of the most important tools of the
BlueJ environment. From the next article
onward, we will look at a specific project,
and discuss how these tools can be used

to teach the fundamentals of Java and
object orientation to beginners. Until
then, get BlueJ installed on your system
and start experimenting! </article>

LEARN MORE
•	 Java SE 7 API

Figure 5

Figure 6

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://docs.oracle.com/javase/7/docs/api/

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

27

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//new to java /

Secure your Web services with Metro, GlassFish, and the NetBeans IDE.MAX BONBHEL
BIO

Part 1

Introduction to Web Service Security
from Server to Client

Web services are the best
way to integrate new or

extend existing functionality into
an application, but this causes
new problems for the security of
data transiting between the client
and the server. This article is the
first in a three-part series that
will focus on the different aspects
of SOAP Web services, such as
security, reliability, and transac-
tions. The goal of this series is to
highlight methods for increasing
the security of applications within
the context of increasingly com-
plex systems.

In this article, I will demon-
strate how to secure Web services
efficiently both on the server and
the client using Metro, GlassFish,
and the NetBeans IDE.
Note: The complete source code
for the application designed in this
article can be downloaded here.

What Is Metro?
Metro (included in the NetBeans
IDE) is a high-performance,
extensible, easy-to-use Web ser-
vice stack. It is a one-stop shop
for all your Web service needs,
from the simplest “hello world”

Web service to reliable, secured,
and transacted Web services that
involve .NET services. The Metro
platform provides, in one place,
all we need to build production-
quality Web services.

What Is WSIT?
Web Services Interoperability
Technology (WSIT) is a part of
the Metro Web service stack
along with the Java API for
XML Web Services Reference
Implementation (JAX-WS RI). It
provides a complete architec-
ture and tools for developing the
next generation of Web service
technologies. WSIT consists of
Java APIs that enable advanced
Web service features to facilitate
interoperability with .NET.

Prerequisites
Download the following soft-
ware, which was used to develop
the application described in this
article:
■■ NetBeans IDE 7.1.2 (available

for download here)

■■ GlassFish 3.1.2 (available for
download here)

■■ Metro 1.3 or higher (included in
NetBeans)

■■ The AuctionApp project from
Part 3 of “Introduction to
RESTful Web Services” (avail-
able for download here)

Note: This article was tested
with the latest version of the
NetBeans IDE (version 7.1.2, as of
this writing).

Overview of Adding Security
Options to the Web Service
What we are going to do is secure
the service and the client of the
AuctionApp project we created
in the previous series of articles
(“Introduction to RESTful Web
Services”) by performing the fol-
lowing tasks:
■■ Secure the Web service:

■■ Add a security mecha-
nism called Username
Authentication with
Symmetric Key.

■■ Import the certificates into
the GlassFish application

PHOTOGRAPH BY
ALLEN MCINNIS/GETTY IMAGES

Author Max Bonbhel demonstrates how to
secure your Web services.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://metro.java.net/
http://glassfish.java.net/
http://www.netbeans.org/
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012
http://netbeans.org/downloads/index.html
http://glassfish.java.net/
http://www.oracle.com/technetwork/java/javamagazine/auctionapp-source-1454404.zip
javascript:openPopup('video_p27')
javascript:openPopup('bio_p27')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

28

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//new to java /

server and set up a default user for
this application.

■■ Configure the client that references
the secured Web service.

■■ Test the secure Web service:
■■ Use the Username Authentication

with Symmetric Key security
mechanism.

■■ Provide the certificates and use a
default user credential to access
the secured service.

The application we are going to secure
is an online auction place (like eBay)
that we created in the previous series
of articles. Sellers post their items in
listings, and buyers bid on the items. A
seller can post one or many items, and a
buyer can bid on one or many items.

Specifically, we are going to limit
access to the JAX-WS Web service that
extrapolates the amount of a bid.

Secure the Web Service
Let’s secure the Web service in two min-
utes using the NetBeans IDE.
1.  �Add a security mechanism called

Username Authentication with
Symmetric Key in the AuctionApp
application:

  a.  �Open the AuctionApp project in
NetBeans IDE 7.1.2 or higher.

  b.  �Expand the Web Service node of
the AuctionApp project and right-
click the AuctionAppSOAPws
node; then select Edit Web Service
Attributes.

  c.  �Under the Quality Of
Service tab, expand the
AuctionAppSOAPwsPortBinding
section (see Figure 1).

  d.  �Make sure the Reliable Message
Delivery option is deselected.

  e.  �Select Secure Service and select
Username Authentication with
Symmetric Key from the Security
Mechanism list.

2.  �Import certificates into the GlassFish
application server and set up a
default user, so we can use the server
immediately to test our application:

  a.  �Select Use Development Defaults
to import certificates and set up a
default user, as shown in Figure 1.

�This option allows NetBeans to import
certificates into the application server
by creating an entry in the GlassFish
keystore and truststore.

  b.  �Click OK.
NetBeans generates the appropriate

configuration for the Web service based
on the options we selected.
3.  �Deploy the Web service by right-

clicking the AuctionApp project node
and choosing Deploy.

NetBeans creates a new WSIT config-
uration file that contains detailed infor-
mation about the options and the run-
time usage of the secured service. The
file is generated in the Web Pages/WEB-
INF node of the AuctionApp project.

Configure the Client
In this section, we are going to refresh
and configure the Web service client
that references the Web service that was
secured in the previous section.

The Web service client will use the
certificates that were imported and the

default credentials to access the secured
Web service.
1.  �Refresh the Web service client:
  a.  ��Make sure the AuctionApp is up

and running. If it is not, right-click
the AuctionApp node and select
Deploy.

  b.  �Open the AuctionAppWeb-
ServiceClient project in NetBeans
IDE 7.1.2 or later. Expand the Web
Service References node of the
AuctionAppWebServiceClient
project and right-click the
AuctionAppSOAPws node; then
select Refresh.

  c.  �From the Confirm Client Refresh
wizard, select Also replace local
wsdl file with original wsdl located
at:, as shown in Figure 2.

Figure 2

Figure 1 Figure 3

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

29

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//new to java /

  d.  �Click OK.
�At this point, the Web service client is
regenerated from the corresponding
Web Services Description Language
(WSDL) file.

2.  �Open the AuctionAppSOAPws
.xml file located in the Source
Packages/META-INF node of the
AuctionAppWebServiceClient project.

�The wsp: Policy tags in the
AuctionAppSOAPws.xml file should
look as shown in Figure 3.

3.  �Deploy the client application
by right-clicking the
AuctionAppWebServiceClient project
node and choosing Deploy.

Test the Secured Web Service
Now it’s time to test the service. We will
invoke the secured Web service from the
client application.

We are going to use a sample front-
end JavaServer Faces (JSF) application to
perform the following tasks:
■■ Try to invoke the secured Web service

without providing the certificates and
the default user.

■■ Use the certificates and the default
user to invoke the secured Web ser-
vice that extrapolates the amount of
a bid.

1.  �Try to invoke the secured Web service
to display the extrapolated amount of
a bid:

  a.  �Make sure the AuctionApp project
we opened previously is up and
running. If it is not, right-click
the AuctionApp node and choose
Deploy.

  b.  �Expand the Web Service

References node of the
AuctionAppWeb-
ServiceClient project
and right-click the
AuctionAppSOAPws
node; then select Edit
Web Service Attributes.

  c.  �Under the Quality Of
Service tab, expand the
Security section.

  d.  �Make sure the Use devel-
opment defaults option
is deselected, as shown in
Figure 4.

  e.  �Click OK.
  f.  �Right-click the

AuctionAppWeb-
ServiceClient project and
choose Clean and Build.

  g.  �Right-click the
AuctionAppWeb-
ServiceClient project
again and choose Run.

�The list of all entries is dis-
played, as shown in
Figure 5.

  h.  �Click the Show all Bid
Items link to display
the list of bid entries, as
shown in Figure 6.

  i.  �Click the View link for the
bidder named Vals to see
the newly extrapolated
amount of the Vals bid, as
shown in Figure 7.

�As you can see, the amount
of the bid changed from
12.0 to 0.0. This means that
the client failed to call the
secured Web service.

Figure 4 Figure 7

Figure 5

Figure 6

Figure 8

Figure 9

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=

//new to java /

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

30

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

2.  �Use the certificates to invoke
the secured Web service
to display the extrapolated
amount of the bid:

  a.  �Make sure the AuctionApp
we opened previously is
up and running. If it is not,
right-click the AuctionApp
node and choose Deploy.

  b.  �Expand the Web Service
References node of the
AuctionAppWebService
Client project and right-
click the AuctionApp­
SOAPws node; then
select Edit Web Service
Attributes.

  c.  �Under the Quality Of
Service tab, expand the
Security section.

  d.  �Select the Use develop­
ment defaults option, as
shown in Figure 8.

  e.  Click OK.
  f.  �Right-click the AuctionApp­

WebServiceClient project
and choose Clean and
Build.

  g.  �Right-click the
AuctionAppWebService­
Client project again and
choose Run.

�The list of all entries is dis-
played, as shown in Figure 5.

  h.  �Click the Show all Bid
Items link to display the list
of bid entries, as shown in
Figure 6.

  i.  �Click the View link for the
bidder named Vals to see

the newly extrapolated
amount of the Vals bid, as
shown in Figure 9.

As you can see, the amount
of the bid changed from 12.0 to
1200.0. This means that the cli-
ent was able to call the secured
Web service. Bravo!

Conclusion
In this article, we have seen how
easy it is to configure security
and reliability into an existing
Web service and set up default
credentials to access the service.
The bundled GlassFish keystore
and truststore files were very
useful. We used NetBeans and
Metro to automatically update
these files and use them imme-
diately for development.

In Part 2 of this series, we
will focus on importing specific
certificates into the GlassFish
keystore and truststore so that
they can be used in a production
environment. </article>

LEARN MORE
•	NetBeans Advanced Web Service

Interoperability manual

•	Metro User Guide

•	GlassFish resources

Bronze Sponsors

Silver Sponsor

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners.

REGISTER NOW
Save $200 by Sept. 28th

SEPT. 30 - OCT. 4 | SAN FRANCISCO

Register at oracle.com/javaone

http://oracle.com/javamagazine
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
http://netbeans.org/kb/docs/websvc/wsit.html
http://metro.java.net/guide/index.html
http://glassfish.java.net/public/getstarted.html
http://oracle.com/javaone

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

31

blog

JA
VA

 T
EC

H
CO

M
M

UN
IT

Y
JA

VA
 IN

 A
CT

IO
N

AB
OU

T
US

GlassFish Monitoring with LightFish

A Conversation with
Adam Bien

Adam Bien is no stranger
to Java developers, espe-
cially those of the Java EE

stripe. He is a celebrated Java
Champion and a JavaOne Rock
Star who has given highly rated
sessions at JavaOne, and he was
named 2010 Java Developer of
the Year by Oracle Magazine.
He works as a consultant in his
native Germany (and through-
out the continent) and is the
author of several books on Java.
We caught up with him to learn
about LightFish, an open source
monitoring tool for GlassFish.

Java Champion Adam Bien discusses his new open source
Java EE 6 stress test monitoring tool. BY ARUN GUPTA

Java Magazine: You recently released
LightFish—a GlassFish monitoring tool. Tell us
about it.
Bien: Stress tests are widely underestimated.
In my client projects, I started to write simple
tools to gather and analyze performance statis-
tics during stress tests. For the Java Magazine
article “Stress Testing Java EE 6 Applications,” I
wrote such a tool from scratch. During the 2011
JavaOne conference in San Francisco, an Oracle
engineer asked me to participate in his talk and
demonstrate the tool in action. After the session
I got the idea of open sourcing the tool, which
was named STM at the time. In fact, the first
commit happened during the JavaOne confer-
ence and is still visible in the git logs.

LightFish is a Java EE 6 application that can
be deployed on any Java EE 6 application server
you like. LightFish accesses the “GlassFish under
Stress” machine (see Figure 1) remotely via REST,
gathers and persists the monitoring data, and
re-exposes the data via REST again. LightView,
the real-time monitoring client, always accesses
the LightFish instance and never the GlassFish
under Stress machine.

PHOTOGRAPHY BY
PIOTR MALECKI/GETTY IMAGES

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oraclejavamagazine-digital.com/javamagazine/20111112#pg42
http://github.com/AdamBien/lightfish

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

32

blog

JA
VA

 T
EC

H
CO

M
M

UN
IT

Y
JA

VA
 IN

 A
CT

IO
N

AB
OU

T
US

Java Magazine: Talk about local deployment
for development time monitoring and remote
monitoring for production usage. What kind
of telemetry data can be monitored?
Bien: Everything that GlassFish exposes. The
GlassFish REST monitoring API exposes the
data in a consistent way. Picking the right
attribute is a matter of performing a single
method invocation. Currently, LightFish
monitors only the essential data:
monitoringTime, usedHeapSize, threadCount,
peakThreadCount, totalErrors, currentThread-
Busy, committedTX, rolledBackTX,
queuedConnections, activeSessions,
expiredSessions, and escalationReason, as well
as the monitoring data of all
installed JDBC connections, the
list of all installed applications,
and the uptime (see Figure 2).
These attributes should be
self-descriptive. They are the
attributes of the JPA [Java
Persistence API] Snapshot entity,
columns in the database, as
well as the attributes exposed
as an XML entity with the same
structure. The whole metadata
is derived from a single entity.

The JavaFX 2.0 client calls
LightFish via a GET HTTP request.
LightFish blocks the connection
and waits until the availability of
the next Snapshot initiated by the
EJB timer expiration. The user gets the illusion
of real-time monitoring without overload-
ing the server. LightFish uses asynchronous
Servlets 3.0 to implement this functionality
and can actually handle several thousand
monitoring clients. The JavaFX 2.0 application
was built according to the MVC [model-view-

controller] pattern with data binding. Each
chart is bound to an attribute of the Snapshot
entity. Because the monitoring data is per-
sisted, you can use any reporting tool you like
to analyze the data after the tests.
Java Magazine: Does LightFish provide an
extensible architecture that allows users to
expose their own monitoring data?
Bien: The recent version of LightFish sup-
ports scripting. You can register persistently
at runtime new rules written in JavaScript,
which are evaluated against the recent and
the current Snapshot instances. You can eas-
ily express something like “please notify me
if the heap size increase reaches a certain

size.” In this case, LightFish will
create a new “Escalation” chan-
nel for you at runtime. You can
subscribe to it with any tool you
like. And the JavaFX 2.0 client,
LightView, creates a new tab
and displays all the escalated
values in a table.

The structure is hardcoded in
the Snapshot entity. To analyze
metrics that have not yet been
exposed, you have to extend
the Snapshot and LightView.
The addition of a monitoring
attribute usually takes about 15
minutes with testing.

However, I’m thinking about
implementing a plug-in system.

Java Magazine: Suppose I’m building Java
EE 6 applications on GlassFish. How can I
benefit from LightFish?
Bien: As a Java EE 6 developer, you have the
unique opportunity to fully focus on the
realization of business logic without think-
ing too much about framework libraries and

Figure 1

Figure 2

SIMPLE RULES

“�Premature
optimization is the
root of all evil” is
particularly true for
Java EE 6. Write
simple business
code, stress test
often, and optimize
on demand.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

33

blog

JA
VA

 T
EC

H
CO

M
M

UN
IT

Y
JA

VA
 IN

 A
CT

IO
N

AB
OU

T
US

the infrastructure. LightFish helps to identify
potential bottlenecks during nightly stress
tests. “Premature optimization is the root of
all evil” is particularly true for Java EE 6. Write
simple business code, stress test often, and
optimize on demand.
Java Magazine: What GlassFish features were
used to build this application?
Bien: LightFish relies exclusively on
GlassFish’s management and monitoring
REST APIs. LightFish uses the REST manage-
ment API to enable monitoring and the REST
monitoring API to fetch the monitoring data.
There is no binary dependency on GlassFish.
You could easily port LightFish to other appli-
cation servers. The REST interface is vendor-
specific, so you will have to reimplement a
single method—org.lightfish.business.monitor-
ing.control.SnapshotProvider#fetchSnapshot—

to be able to monitor, for example, JBoss.
Hence, I’m using GlassFish in the majority of
my projects. I do not plan to reimplement the
method yet.
Java Magazine: Is there any performance
overhead?
Bien: LightFish polls GlassFish. In the default
case, LightFish will execute several GET
requests every two seconds. This is just a
default, and it is configurable at runtime.
During nightly stress tests, you can use a
longer interval and minimize the impact.
LightFish continuously monitors my x-ray
blog statistics software with negligible
overhead.
Java Magazine: Why did you choose GlassFish
to be the first app server? And, do you plan to
port this application to other app servers?
Bien: My clients have been using GlassFish
since version 2.0. I use GlassFish because all
my Java EE projects are based on GlassFish.
Porting LightFish to another application
server is easy, but it is a rather boring task. I
would prefer to implement new functional-
ity instead. LightFish is my leisure-time open
source project and, thus, it should be fun.

Java Magazine: What are your future plans,
and how can the Java EE 6 community help
improve LightFish?
Bien: There’s a lot to do. Right now LightFish
monitors only Java EE–specific behav-
ior. I would like to dig into EJB [Enterprise
JavaBeans] and JPA metadata as well. I’m
also thinking of analyzing any application-
dependent monitoring information. If you
have an idea, just fork LightFish at github
.com/AdamBien/lightfish. I have only one
requirement: the code should be developed
in the Java EE way—as simply as possible
with minimal (none would be best) external
dependencies. LightFish is developed under
the Apache license.
Java Magazine: How can developers get
started?
Bien: Download lightfish.war and drop it
into the glassfish/domains/domain1/
autodeploy folder. LightFish should install
in a few seconds. No further interaction is
needed. Then I would download the code. I
tried to write simple code without any bloat.
I even used LightFish code at recent confer-
ences to explain Java EE capabilities. I’ve also
recorded an introductory screencast [click the
play button, left, to watch]. </article>

Java Champion
Adam Bien and Java
Evangelist Arun Gupta
discuss LightFish
while getting a
caffeine fix. Both were
in Poznań, Poland,
for the GeeCON 2012
conference in May.

Arun Gupta (@arungupta) is a Java evangelist
at Oracle, where he works to create and foster the
community around Java EE, GlassFish, and Oracle
WebLogic Server. He has more than 15 years of
experience in the software industry.

LEARN MORE
•	Adam Bien’s blog

Adam Bien demonstrates LightFish.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://x-ray.adam-bien.com
http://x-ray.adam-bien.com
http://github.com/AdamBien/lightfish
http://github.com/AdamBien/lightfish
http://lightfish.adam-bien.com
http://www.adam-bien.com/roller/abien/
javascript:openPopup('video_p33')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

34

blog

01 02 03 04 05 06

C H O O S E YO U R TO O L

JA
VA

 T
EC

H
CO

M
M

UN
IT

Y
JA

VA
 IN

 A
CT

IO
N

AB
OU

T
US

PHOTOGRAPHY BY BOB ADLER

Modern era agile software develop-
ment is predicated upon iterative,
incremental development processes,

with continuous integration (CI) of fixes and
enhancements. With the need for such CI
comes the complexity of managing geographi-
cally distributed teams that are utilizing open

source modules and frameworks obtained in
a sometimes unregulated and undocumented
fashion across the internet.

Fortunately, a rich stack of tool offerings
enables development teams to more effec-
tively track, build, integrate, and manage soft-
ware projects and their modules. This article

discusses many of the tools available today;
however, this is by no means a complete,
definitive list. You may have other favorites
that are not included; let us know.

Java.net, among other things, provides a
delivery channel for some of the technologies
described in the following pages.

BY STEVE MELOAN
WITH CONTRIBUTIONS BY JANICE J. HEISS

With a bevy of Web-based development tools
available, it’s a great time to be a Java developer.

01 BUILD AUTOMATION TOOLS

02 CONTINUOUS INTEGRATION TOOLS

03 OPEN SOURCE MODULES

04 SOFTWARE CONFIG MANAGEMENT

05 REPOSITORY MANAGEMENT

06 RUNTIME ANALYSIS

DEVELOPER
POWER

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
http://home.java.net/

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

35

blog

01 02 03 04 05 06

C H O O S E YO U R TO O L

JA
VA

 T
EC

H
CO

M
M

UN
IT

Y
JA

VA
 IN

 A
CT

IO
N

AB
OU

T
US

A build automation tool ideally provides
the ability to build a given project with a
single command, mobilizing all the
modules, artifacts, libraries, and code
necessary to that project.
Apache Maven. Hosted by the Apache
Software Foundation and written in Java,
Maven can be used to build projects in
Java, as well as C#, Ruby, Scala, and other
languages. It operates from an XML file,
but uses a very different paradigm from
Ant. Rather than simply chaining together
sequential build tasks, as occurs with
Ant, Maven defines a project in terms of
its dependencies, external modules and
components, build order, directories, and
required plug-ins. Maven projects are
defined via a Project Object Model (POM)
file (pom.xml). Maven dynamically down-
loads Java libraries and Maven plug-ins
from either the Maven Central repository
or other defined software repositories.

Larger Maven projects are typically
divided into several subprojects, each
with its own POM file, but with a root
POM to compile the master project via
a single command. The Maven plug-in
architecture allows it to interface with
build tools for other languages, including
the .NET framework and C/C++. Popular
IDEs that support development with
Maven include Eclipse, IntelliJ, JBuilder,
JDeveloper, and NetBeans.
Gradle. Written in Java and Groovy, Gradle
builds upon the concepts of Ant and
Maven but uses a Groovy-based Domain-

01 BUILD AUTOMATION TOOLS
“I find Apache Ant
(Another Neat Tool) very
useful for automating the
build process. I especially

appreciate its use of XML, which facilitates
build-script creation, and the JUnit task,
which facilitates integration of JUnit test-
ing into the process.”

—Jeff Friesen,
Freelance Developer and Educator

“I love using Maven in large
organizations—where many
developers are working on
multiple projects. Some very

deep thought about the software project
lifecycle has gone into Maven over the years,
and its strict standards approach works bril-
liantly where chaos can potentially abound.
It doesn’t matter which project developers
join. A Maven mvn clean install command
builds, tests, packages, and installs a local
copy of the application for them, letting
them get started with their coding.

Having good build and CI processes in
place means that you can write code more
quickly and maintain a higher bar of qual-
ity. In conjunction with TDD [test-driven
development], build and CI means you can
rapidly refactor without fear! Think of it as
having a mentor looking over your shoulder—
providing a safe and controlled environment
in which you can quickly code and make
bold changes.”

—Martijn Verburg, Coauthor,
The Well-Grounded Java Developer

E X P E R T O P I N I O N

“Identifying and download-
ing the correct versions of a
Java project’s dependent JAR
files, which may have been

obtained from a variety of online sources, is
a thankless and often error-prone activity.
Maven takes care of this for you, and effec-
tively structures your project so as to elimi-
nate a host of setup and configuration issues.
Maven provides plug-ins that encourage and
promote good standard software practices—
including unit testing, version control, and
standardized release processes.

A controlled process like Maven’s makes
development within a team far more effi-
cient and scalable. And the documentation
and site reports add to Maven’s value as
a full-featured project management and
comprehension tool.”

—Cas Saternos, Oracle Certified DBA and
Sun Certified Java Programmer

“For me, the real difference
is between tools that have
a point of view about how
development processes

should work and those that don’t. I call
these two types ‘tools and metatools.’
Maven is a build tool, because it essentially
forces you to adapt to the Maven lifecycle
and way of doing things. Ant doesn’t come
with such a point of view—instead, you
have to build up targets and a sequence
based on your own project lifecycle. Some
teams prefer the additional structure which
comes with a tool like Maven, whereas other
teams object to having to fit in with the
demands of the Maven lifecycle.”

—Ben Evans, Coauthor,
The Well-Grounded Java Developer

Ant/Ivy 101 Apache Ant.
Similar to the
decades-old

UNIX Make in some respects, Apache Ant
is written in Java and is best suited to
building Java projects. It uses an XML file
(build.xml) to define a given build process
and its dependencies. Within the build file,
Ant can also delegate build work to either
native or Java-based external programs.

One of Ant’s primary goals was to solve
the portability issues of Make, where dif-
ferent platforms required different script
commands. Ant provides built-in func-
tionality designed to behave the same on
all platforms. It has limited fault-handling
capabilities and no persistence of state, so
it is primarily useful only for classic build
and test processes.

Ant is supported by most major IDEs,
including Eclipse, IntelliJ, JBuilder,
JDeveloper, NetBeans, and WebSphere.
Apache Ivy. Written in Java, Apache Ivy
is a subproject of the Apache Ant project,
serving as a transitive relation depen-
dency manager. An XML file defines
project dependencies and the resources
necessary to build the given project.
Ivy resolves and downloads required
resources from the specified repositories.
Whereas Maven is a complete build tool,
with built-in dependency management,
Ivy focuses specifically on dependency
management functionality, working in
partnership with Ant.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://maven.apache.org/
http://www.gradle.org/
http://ant.apache.org/
http://ant.apache.org/ivy/

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

36

blog

01 02 03 04 05 06

C H O O S E YO U R TO O L

JA
VA

 T
EC

H
CO

M
M

UN
IT

Y
JA

VA
 IN

 A
CT

IO
N

AB
OU

T
US

E X P E R T O P I N I O N
Specific Language (DSL) rather than XML.
Gradle uses a directed acyclic graph (DAG)
to determine the order in which build
tasks should be run. Gradle’s DSL is exten-
sible, allowing for the addition of new
language elements or the enhancement
of existing elements. Intended to manage
large, multiproject builds, Gradle intel-

ligently determines which part of a build
tree is current, so that already up-to-date
dependent branches needn’t be rebuilt.

Gradle offers support and transitive
dependency management for existing
Maven and Ivy repositories and also pro-
vides a converter to translate Maven POM
files into Gradle scripts.

02 CONTINUOUS INTEGRATION TOOLS

When properly implemented, CI requires
that each commit of new software be
accompanied by a complete build and
run, and that it pass all defined unit tests.
With the advent of CI tools, this change
in commit functionality has increasingly
become highly sophisticated and auto-
mated. CI tools include CruiseControl,
Hudson, Jenkins, Bamboo, BuildMaster,
AnthillPro, and Teamcity.

The big-picture goal of such CI tools is
to wrap configurable intelligence (that
can be extended with plug-ins) around
the process of version control, builds,
testing, and reporting of results. Below is
a sampling of popular CI tools, including
two recent winners of the Duke’s Choice
Award, Hudson and Jenkins.
Hudson. Winner of the 2008 Duke’s
Choice Award in the Developer Solutions
category, Hudson is a popular alterna-
tive to CruiseControl. Hudson provides
an easy-to-use, GUI-based configurable
system for integrating changes to a
project—obtaining explicit fresh builds
of the project, scheduling future builds,

and monitoring the results of externally
run jobs (such as cron jobs), including
those that execute on remote machines.
Results can be monitored via e-mail or
RSS, and third-party plug-ins offer addi-
tional extensible functionality.

Hudson is written in Java, and runs in a
Servlet container (such as Apache Tomcat
or GlassFish). It can execute Ant- and
Maven-based projects as well as simple
shell scripts and Microsoft Windows batch
commands, and can distribute build/
test loads to multiple computers, as well
as keep track of which builds produced
which JARs. Plug-ins provide integration
with most version control systems and
bug databases and can add new func-
tionality or even change the appearance
of Hudson. Meanwhile, build test reports
can be generated in a variety of formats
(JUnit is supported out of the box).

Oracle continues to develop Hudson
along with the community at large. But
in January 2011, a fork of the project was
created and named Jenkins.
Jenkins. Originally begun as the Hudson

“My metatool of choice is
NetBeans, Java EE Edition.
It integrates Maven 3;
JUnit; Ant; Hudson/

Jenkins; and countless Java EE hints, wiz-
ards, and extensions. You get an extremely
productive environment with a single click—
no plug-in fiddling required.”

—Adam Bien, Java Champion

“Jenkins is an awesome tool
for continuous integration.
With it, you can combine all
the work of a team with less

error and more quality/productivity—while
monitoring status and the number of tests.
And, yes, you can use JUnit! There are
almost too many available plug-ins—for
example, Sonar, which verifies the quality of
your team’s code, test coverage, duplication
of code, and so on.”

—Otávio Gonçalves de Santana,
JUG Leader, Java Bahia

“Combining smart features
of both Ant and Maven,
and being powered by
Groovy, Gradle provides

a new and powerful way to handle your
delivery pipelines.”

—Michael Hüttermann, Java Champion

“Having been a Java devel-
oper since nearly the begin-
ning (summer of ’95), I have
a collection of open source

projects that I either founded or still main-
tain. As a full-time researcher, and also a
new father, I need a system to reliably man-
age these projects and push out releases.
That’s what Hudson is to me. I’ve been
using it for several years now and continue
to love it—it just works.”

—Josh Marinacci, Java Champion

“Hudson/Jenkins are CI
tools, so the first thing that
comes to mind is that they
‘execute tests.’ Correct. But

they do so much more. With the proper set
of plug-ins—such as test coverage and
static analysis—they provide everyone in the
development team with a highly valuable
information center on the health of the proj-
ect. Developers can autonomously verify the
quality of the code they are writing, and proj-
ect leaders can keep everything under con-
trol, monitoring both the progress and the
technical debt. The best of Hudson/Jenkins
happens with Maven-based projects, thanks
to Maven profiles. This combination makes
it easier to build on multiple configurations—
such as JDKs and databases. In addition,
Maven can warn you about whether the
library versions you’re using will break your
build due to a regression.”

—Fabrizio Giudici,
Senior Java Architect, Tidalwave

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://hudson-ci.org/

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

37

blog

01 02 03 04 05 06

C H O O S E YO U R TO O L

JA
VA

 T
EC

H
CO

M
M

UN
IT

Y
JA

VA
 IN

 A
CT

IO
N

AB
OU

T
US

CI tool, the Jenkins project was created in
January 2011. Both Hudson and Jenkins
consider the other to be a fork, with sepa-
rate development branches.

Winner of the 2008 Duke’s Choice
Award (as Hudson) in the Developer
Solutions category, Jenkins provides an
easy-to-use, GUI-based configurable
system for integrating changes to a
project, obtaining explicit fresh builds
of a project, scheduling future builds,
and monitoring the results of externally
run jobs (such as cron jobs), including
those that execute on remote machines.
Results can be monitored via e-mail or
RSS, and third-party plug-ins offer addi-
tional extensible functionality.

Jenkins is written in Java, and runs
in a Servlet container (such as Tomcat
or GlassFish). It can execute Ant- and
Maven-based projects as well as simple
shell scripts and Windows batch com-
mands, and can distribute build/test
loads to multiple computers, as well
as keep track of which builds produced
which JARs. Plug-ins provide integration
with most version control systems and
bug databases and can add new func-
tionality or even change the appearance
of Jenkins. Meanwhile, build test reports
can be generated in a variety of formats
(JUnit is supported out of the box).
CruiseControl. Written in Java,
CruiseControl provides an extensible
framework for custom CI processing. Its
features include a Web interface to moni-
tor current and past builds; plug-ins for a
variety of source controls, build technolo-
gies, and notification schemes; interfaces
for popular build automation tools such

as Ant and Maven, as well as a standard
exec builder; and ports of CruiseControl
for .NET (CruiseControl.NET) and Ruby
(CruiseControl.rb).
ToolsCloud. Almost in a conceptual cat-
egory by itself, ToolsCloud is effectively
a hybrid cloud-based IDE that includes
project management, CI functionality
(including build automation and auto-
mated testing), metrics and analysis,
and a broad array of development tools.
Available via a monthly subscription plan,
and hosted on Amazon Elastic Compute
Cloud (EC2), ToolsCloud includes Git
(software configuration management),
Redmine (project management and bug-
tracking tool), Nexus (artifact manage-
ment), Hudson/Jenkins (CI), and more.
ToolsCloud features a management
calendar and tracking, reporting, and sta-
tistics tools as well as metrics history and
analysis tools. It easily integrates with
your IDE of choice.

03 OPEN SOURCE MODULES

Because modern software development
involves geographically distributed teams
that use diverse open source modules
and frameworks acquired from across
the internet, projects can run consider-
able security, consistency, and reliability
risks. According to a survey conducted by
Sonatype, more than 80 percent of typi-
cal software applications consist of open
source components and frameworks. Yet
many studies find a staggering use of vul-
nerable, insecure, and nondocumented
open source offerings. Sonatype finds
that only 32 percent of teams maintain a
detailed “bill of materials” record of the
open source components in their devel-
opment stack. The survey also revealed
that only 50 percent of developers report
that their company has an open source
software policy.
Code/artifact repository. In order to deal
with an ever growing and ever more com-
plex open source ecosystem, enterprises
are increasingly turning to code reposito-
ries and cached repository management
systems—establishing a centralized,
secure, and managed code repository for
the artifacts required to build and main-
tain projects.

A code repository establishes a platform
for the storage, retrieval, and manage-
ment of the binary software artifacts and
metadata necessary for a given project or
application. The information is archived
and organized in such a way that build
tools such as Maven or Ant/Ivy can effec-

tively locate and process the information.
In the case of a typical Maven reposi-

tory, the binary artifact is a JAR file, but it
could just as easily be a Flash library or
a Ruby library. When a Maven POM file
lists a project dependency that includes
a repository-based entry, it downloads
that entry’s POM, and then downloads
any libraries or modules required by that
dependency. This ability to determine
a project’s dependencies and transitive
dependencies is made possible by the
standards and structure of the repository.
Sonatype/Central repository. The default
configuration of Maven retrieves soft-
ware artifacts from the Central reposi-
tory, a public facility that is stewarded
by Sonatype. Central reportedly receives
four billion requests per year, contains
300,000 components, and is accessed
by 60,000 development organizations
worldwide. The average enterprise report-
edly downloads more than 1,000 unique
components from Central each month.

Repositories such as Central and tools
such as Maven typically use a Group,
Artifact, Version (GAV) “coordinate” sys-
tem as a means of storing and locating
a given artifact: http://repo1.maven.org/
groupID/artifactID/version/.

For example, components produced by
the Maven project at the Apache Software
Foundation would be stored/located
under a groupID of org.apache.maven.
An artifactID is the identifier for a given
component. The combination of groupID

E X P E R T O P I N I O N

“Using Jenkins is like
having an extra member
in your development team.
It relentlessly builds and

tests your software, preventing mistakes
and freeing up time so that your team can
focus on simply producing great software.”

—Juliano Viana,
Founder and CTO of LogicStyle

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jenkins-ci.org/
http://cruisecontrol.sourceforge.net/
http://toolscloud.com/
http://http://www.sonatype.org/central

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

38

blog

01 02 03 04 05 06

C H O O S E YO U R TO O L

JA
VA

 T
EC

H
CO

M
M

UN
IT

Y
JA

VA
 IN

 A
CT

IO
N

AB
OU

T
US

and artifactID uniquely identifies a given
project, and the version identifier speci-
fies the version of the project, while the
packaging identifier specifies the binary
software format.

Once an artifact is assigned a release
number on Central, the file contents
cannot be altered. The Central repository
also contains cryptographic hashes and
PGP signatures that can be used to verify
artifact authenticity and integrity.

While Maven can be configured to
retrieve software artifacts directly from
one of the many Central mirror sites
around the world (or any external reposi-
tory), an increasingly popular option that
is faster, more secure, and more eas-
ily managed is to employ a repository
manager as a locally controlled proxy to
Central and other artifact repositories
(such as those provided by Oracle, Red
Hat, and Codehaus).

04 SOFTWARE CONFIG MANAGEMENT

05 REPOSITORY MANAGEMENT

Software configuration management
(SCM) entails rigorously controlling
and tracking changes made to soft-
ware, and includes a subfunctionality
of revision control (version handling).
Development tools such as Hudson and
Jenkins (explored earlier) offer support
for a variety of such SCM tools, including
Clearcase, CVS, Git, and Subversion.
Git. Git offers a distributed revision con-

trol and SCM system, suitable to handle
both large and small development proj-
ects. GitHub provides a collaborative,
Web-based facility to manage both public
and private Git repositories. Written
using Ruby on Rails, GitHub is the most
popular Git hosting site, providing social
networking functionality and usage data
specifically directed toward collaborative
development.

A repository management system offers
a locally cached proxy between develop-
ment teams and external repositories. It
speeds download times, ensures man-
aged and configurable access to both
external artifacts and internally cre-
ated modules, and provides tagged and
searchable metadata.
Sonatype Nexus. Nexus is a managed,
central point of access for external repos-
itories, offering configurable permissions
and customizable/searchable user-
defined metadata. Figure 1 depicts how
a repository manager fits into a typical
development process.

Nexus provides a centralized point for
managed access of open source software
components and their dependencies,
serving as a configurable proxy between
organizational and public repositories.

Nexus offers cached components for
quick download, ensures that all users
access the same modules, enables secure
and controllable deployment of internally
developed components, and provides
configurable, partner-specific access.
Meanwhile, user-defined metadata offers
rich and customizable search capabilities.
JFrog Artifactory. Winner of the 2011
Duke’s Choice Award for Innovative Tool
for Developers, JFrog Artifactory is a Java-
based binary file repository management
tool, with a free open source version, a
paid Pro version, and a software-as-
a-service (SaaS) cloud-based version
(Artifactory Online). Figure 2 shows how
Artifactory acts as a proxy between your
Maven client and the outside world.

JFrog Artifactory serves as a proxy
between build tools such as Maven, Ant,

E X P E R T O P I N I O N

“Nexus is a rock-solid vault
for your binaries, tailor-
made for a Maven-based
build process.”

—John Ferguson Smart,
CEO, Wakaleo Consulting

“Artifactory is a great
choice for DevOps. Its
integration with Jenkins
offers full traceability

across builds, links back to tickets, and
allows comfortable build promotions. Easy
configuration, openness, and extensibility
make Jenkins a central service hub and a
smart backbone of your continuous deliv-
ery and DevOps infrastructure.”

—Michael Hüttermann, Java Champion

Figure 1

Nexus OS

Central Repository

Build/CI
Systems

Developer Teams

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/
http://www.sonatype.org/nexus
http://www.jfrog.com/products.php

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

39

blog

01 02 03 04 05 06

C H O O S E YO U R TO O L

JA
VA

 T
EC

H
CO

M
M

UN
IT

Y
JA

VA
 IN

 A
CT

IO
N

AB
OU

T
US

While not explicitly directed at collabora-
tive software development/management,
runtime analysis tools offer an essential
debugging/tuning window into applica-
tions during actual execution and are,
therefore, an often-used tool class in the
development lifecycle.
VisualVM. VisualVM provides an intuitive,
graphical interface that allows developers
to monitor and troubleshoot executing
Java applications. While VisualVM itself
requires JDK 6 to run, it can monitor any
application running at JDK 1.4.2 or greater.
Utilizing such technologies as jvmstat,
Java Management Extensions (JMX), the
Serviceability Agent (SA), and the Attach
API, VisualVM displays both local and
remote applications, offering visual data
on CPU usage, Garbage Collection (GC)
activity, heap and permanent generation
memory, loaded classes, running threads,
and more. VisualVM also allows for offline
analysis of core dumps, as well as analy-
sis of taken thread dumps, heap dumps,
and profiler snapshots. And because
VisualVM is built on the NetBeans plat-
form, it is readily extensible with plug-ins
(available at the VisualVM Plugin Center).
Finally, VisualVM can be integrated with
such IDEs as Eclipse and NetBeans.
JRebel. Developed by Jevgeni Kabanov
and Toomas Römer of ZeroTurnaround,
JRebel is a plug-in for the Java Virtual
Machine (JVM) that enables instant
reloading of changes made to a Java
class file. In 2011, JRebel won the JAX

Innovation Award for Most Innovative
Java Technology. At JavaOne 2011, JRebel
was awarded the Duke’s Choice Award
for Innovative Compiler for Java Code.
Java-based and usable on any operat-
ing system that supports Java, JRebel is
IDE agnostic and designed for integra-
tion with various Java EE standards and
Java application servers. It is freely avail-
able to open source software projects
and developers using Scala. It supports
immediately visible code changes with-
out redeploying; handles changes to class
structures, frameworks, and Java EE; and
supports all major Java application serv-
ers, IDEs, and frameworks. It eliminates
memory leaks and build time during
development and supports Apache Ant
and Apache Maven. </article>

06 RUNTIME ANALYSIS E X P E R T O P I N I O N

Steve Meloan is a former C/UNIX software
developer who has covered the Web and
the internet for such publications as Wired,
Rolling Stone, Playboy, SF Weekly, and the
San Francisco Examiner. He recently published
a science-adventure novel, The Shroud, and
regularly contributes to The Huffington Post.

Janice J. Heiss is the Java acquisitions editor at
Oracle and a technology editor at Java Magazine.

Ivy, Gradle, and so on—providing local,
fast-access caching of remote artifacts,
offering configurable management of
repository access permissions and
customizable/searchable user-defined
metadata. Artifactory is built on top of
the Java Content Repository (JCR), pack-
aged as a standard Java EE Web applica-
tion, and deployable into any standard
Servlet container (Tomcat, WebSphere,
JBoss, GlassFish, and so on.)

The Jenkins CI Artifactory Online
repository service—a Jenkins/JFrog
collaboration offering a cloud-based
Artifactory repository solution developed
specifically for the Jenkins community—
was announced at the April 2012 Jenkins
User Conference in Paris, France.

“VisualVM is a tool that
every Java developer
should become familiar
with. It comes as part

of every modern Java SDK and enables
developers to visualize the internals of
their applications as they run, helping
diagnose even the most-difficult per-
formance problems. And the integration
with BTrace means that you can perform
complex inspections on running produc-
tion systems, without affecting end-user
experience.”

—Juliano Viana,
Founder and CTO of LogicStyle

“I think VisualVM is
underrated by many Java
developers. Not only does
it enable you to monitor

memory consumption and threads, it’s
invaluable when it comes to memory
analysis. With this tool, I’ve easily found
the causes of a number of memory leaks
in customer projects.”

—Fabrizio Giudici,
Senior Java Architect, Tidalwave

Artifactory

Maven Clients

Remote
Repositories

Figure 2

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://visualvm.java.net/
http://zeroturnaround.com/jrebel/

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

40

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

The HotSpot Serviceability
Agent is a hidden treasure

present in the JDK that very
few people know about. The
Serviceability Agent (SA) is a set
of Java APIs and tools that can be
used to debug live Java processes
and core files (also called crash
dumps on Microsoft Windows).

SA can examine Java processes
or core files, which makes it suit-
able for debugging Java programs
as well as the Java HotSpot VM. It
is a snapshot debugger and lets
us look at the state of a frozen
Java process or a core file. When
SA is attached to a Java process,
it stops the process at that point
and we can explore the Java heap;
look at the threads that were run-
ning in the process at that point;
examine internal data structures
of the Java HotSpot VM; and look
at the loaded classes, compiled
code of methods, and so on.
The process resumes after SA is
detached from it.

SA Binaries
Before we go into the details
about the features and utilities
that SA offers, I would like to men-

tion SA binaries that are present in
the JDK. There are two SA binaries
that are shipped with the JDK:
■■ For Microsoft Windows:

sa-jdi.jar and jvm.dll
■■ For Oracle Solaris and Linux:

sa-jdi.jar and libsaproc.so
These binaries provide the SA

Java APIs and also include useful
debugging tools implemented
using these APIs.

JDK Versions with Complete
SA Binaries
The following JDK versions have
complete SA binaries:
■■ JDK 7 on all platforms
■■ 6u17+ on Oracle Solaris and

Linux
■■ 6u31+ on Microsoft Windows

Prior to these versions, SA was
not shipped with
the JDK on Microsoft
Windows, and only a
subset of SA classes
was shipped with JDKs
on Oracle Solaris and
Linux. The JDK ver-
sions above make the
complete set of SA
classes available on all
of these platforms.

Why Use SA?
Why use SA when we have native
debugging tools such as dbx,
GDB, WinDbg, and many others?

First, SA is a Java-based,
platform-independent tool, so it
can be used to debug Java pro-
cesses and cores on all the plat-
forms where Java is supported.
Additionally, debugging a Java
process or the Java HotSpot VM
with native debuggers is very
limiting, because although native
debuggers can help us examine
the native OS process state, they
cannot help us examine the Java
or the Java Virtual Machine (JVM)
state of the process.

For example, if I need to view
the objects in the Java heap,
native debuggers would show me

the raw hex numbers,
whereas SA has the
ability to interpret
those hex numbers
and present the
object view instead.
SA has knowledge
about the Java heap,
such as its boundar-
ies, objects in the Java
heap, loaded classes,

thread objects, and internal rep-
resentations of the Java HotSpot
VM. SA makes it very easy for us
to examine the Java-level details
and JVM-level details of the Java
process or core file.

SA Debugging Tools
There are two main SA debugging
tools implemented using SA APIs:
■■ HSDB, which is a GUI tool and

the main debugger
■■ CLHSDB, which is a command-

line variant of HSDB
HSDB: The GUI debugger. HSDB
facilitates examining Java pro-
cesses, core files, and also remote
Java processes. Let’s see how
we can launch and use it on a
Microsoft Windows machine.

First, we need to set some envi-
ronment variables. Set SA_JAVA to
the location of the Java executable
in the JDK/bin folder, for example:

On Microsoft Windows, the
PATH environment variable should
contain the location of the JVM
binary used by the target pro-

set SA_JAVA=
d:\java\jdk1.7.0_03\bin\java

HotSpot’s Hidden Treasure
The HotSpot Serviceability Agent’s powerful tools can debug live Java processes and core files.

POONAM BAJAJ
BIO

DETAILS, DETAILS

SA makes it very easy
to examine the
Java-level details
and JVM-level
details of a Java
process or core file.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://openjdk.java.net/groups/hotspot/docs/Serviceability.html#bsa
http://openjdk.java.net/groups/hotspot/docs/Serviceability.html#bsa
mailto:poonam.bajaj%40oracle.com?subject=
javascript:openPopup('bio_p40')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

41

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

cess or core and also the folder where
the Debugging Tools for Windows are
installed on the machine, for example:

Set the PATH environment variable
and then launch HSDB as follows:

On an Oracle Solaris or Linux
machine, we just need to set SA_JAVA

to the Java executable and then we can
launch HSDB as follows:

These launch commands bring up the
HSDB GUI tool, as shown in Figure 1.

Let’s take a quick look at some of the
very useful utilities available in this tool,

which are shown in Figure 2.
Figure 3 shows the Object Inspector,

which you can use to inspect Java objects.
Figure 4 shows how you can find

where a particular address lies in the
Java process.

Figure 5 shows the Object Histogram.
You can find the heap boundaries, as

shown in Figure 6.
CLHSDB: The command-line debugger.
CLHSDB is the command-line variant
of HSDB.

We need to set the same environ-
ment variables for CLHSDB as we did for
HSDB. Use the following command to
launch this tool on Microsoft Windows:

CLHSDB offers almost all the features
that the GUI version of the tool offers.

set PATH= d:\java\jdk1.7.0_03\bin\
server;d:\windbg;%PATH%

java -Dsun.jvm.hotspot.debugger.
useWindbgDebugger=true -classpath
d:\java\jdk1.7.0_03\lib\sa-jdi.jar
sun.jvm.hotspot.HSDB

java -Dsun.jvm.hotspot.debugger.
useProcDebugger=true -classpath
/java/jdk1.7.0/lib/sa-jdi.jar
sun.jvm.hotspot.HSDB

java -Dsun.jvm.hotspot.debugger.
useWindbgDebugger=true -classpath
d:\java\jdk1.7.0_03\lib\sa-jdi.jar
sun.jvm.hotspot.CLHSDB

Figure 1
Figure 3 Figure 5

Figure 6Figure 4Figure 2

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

42

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

For example, to examine any Java object,
use the inspect command, as shown in
Listing 1.

To look at heap boundaries, we can
use the universe command, as shown in
Listing 2.

Listing 3 and Listing 4 show the com-
plete list of commands available with
this tool.

Other Tools
There are some other very handy small
utilities bundled with SA. Let’s see how
to use them and how their output looks:
■■ FinalizerInfo prints details on the

finalizable objects, as shown in
Listing 5.

■■ HeapDumper dumps the heap in
HPROF format, as shown in Listing 6.

■■ PermStat prints the permanent gen-
eration statistics, as shown in Listing 7.

■■ PMap prints the process map of the
process (see Listing 8), much like the
Oracle Solaris pmap tool does.

■■ SOQL, the Structured Object Query
Language tool, is an SQL-like lan-
guage that we can use to query the
Java heap, as shown in Listing 9. JHat
also provides an interface for using
this language, and pretty good docu-
mentation on this language is also
available in JHat.

■■ JSDB, the JavaScript Debugger, pro-
vides a JavaScript interface to SA
(see Listing 10). It is a command-line
JavaScript shell based on Mozilla’s
Rhino JavaScript engine. More details
on this utility can be found in the open
source Java HotSpot VM repository in
the file hotspot/agent/doc/jsdb.html.

Let’s Get Our Hands Dirty
Let’s get a real feel for the SA tools and
debug a Java program crash using them.
I have a simple program of Java Native
Interface (JNI) code that writes to a byte
array beyond its size limit, which results
in overwriting and corrupting the object

that follows it in the Java heap. This
causes the program to crash when the
garbage collector tries to scan the heap.
See Listing 11.

The crash happened in
objArrayKlass::oop_follow_
contents(oopDesc*) at program counter

Download all listings in this issue as text

hsdb> inspect 0x23f50a20
instance of Oop for java/lang/Thread @ 0x23f50a20 @ 0x23f50a20 (size = 104)
_mark: 1
_metadata._klass: InstanceKlass for java/lang/Thread @ 0x38966700 Oop @
0x38966700
name: [C @ 0x23f50ac0 Oop for [C @ 0x23f50ac0
priority: 5
threadQ: null null
eetop: 4758528
single_step: false
daemon: false
stillborn: false
target: null null
group: Oop for java/lang/ThreadGroup @ 0x23f50840 Oop for java/lang/Thread-
Group @ 0x23f50840
contextClassLoader: Oop for sun/misc/Launcher$AppClassLoader @ 0x23f7b398 Oop
for sun/misc/Launcher$AppClassLoader @ 0x23f7b398
inheritedAccessControlContext: Oop for java/security/AccessControlContext @
0x23f50ad8 Oop for java/security/AccessControlContext @ 0x23f50ad8
threadLocals: Oop for java/lang/ThreadLocal$ThreadLocalMap @ 0x23f7c960 Oop
for java/lang/ThreadLocal$ThreadLocalMap @ 0x23f7c960
inheritableThreadLocals: null null
stackSize: 0
nativeParkEventPointer: 0
tid: 1
threadStatus: 5
parkBlocker: null null
blocker: null null
blockerLock: Oop for java/lang/Object @ 0x23f50ab8 Oop for java/lang/Object @
0x23f50ab8
uncaughtExceptionHandler: null nullCheck heap boundaries

LISTING 1 LISTING 2 LISTING 3 LISTING 4 LISTING 5 LISTING 6

GIVE BACK!
ADOPT A JSR

Find your JSR here

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://blogs.oracle.com/poonam/entry/object_query_language_help
http://www.mozilla.org/rhino/
http://www.mozilla.org/rhino/
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012
https://blogs.oracle.com/java/entry/adopt_a_jsr
javascript:openPopup('listing2_p42')
javascript:openPopup('listing3_p42')
javascript:openPopup('listing4_p42')
javascript:openPopup('listing5_p42')
javascript:openPopup('listing6_p42')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

43

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

(PC) 0xfe5d2c17. See Listing 12, which
shows the stack trace of the crash from
the hs_err file.

With the crash, a core file got gener-
ated. Let’s open this core with HSDB (see
Figure 7), dig out some information from
it, and try to find the cause of this crash.

Figure 8 shows the disassembly of the
code that was being executed around PC
0xfe5d2c17 when the crash happened.

The instructions shown in Figure 8
indicate that the process crashed when
trying to access the value at address
eax+100. From the hs_err file, we can

see the contents of the registers and
what the value of the EAX register was:

What was at 0x6e4f6176, and why
did the crash happen while reading the
value at this address? HSDB helps us see
that, as shown in Figure 9.

The address does not lie in the Java
heap. Using the Find Address in Heap
option, we can find the locations in the
Java heap from which this particular

address is referenced (see Figure 10).
Examine these found locations in the

Object Inspector to see if these are part
of any object, as shown in Figure 11.

All the found addresses bring up the
byte array object at 0xc5036ea0 in the
Object Inspector, which means the
object at 0xc5036ea0 is the closest valid

EAX=0x6e4f6176, EBX=0xc50a083c,
ECX=0x614a2e2e, EDX=0x00000006
ESP=0xfbc7e360, EBP=0xfbc7e398,
ESI=0xc5036ef0, EDI=0x00000000
EIP=0xfe5d2c17, EFLAGS=0x00010202

Figure 8

Figure 9

Figure 10

Figure 7

Figure 11

Download all listings in this issue as text

java -Dsun.jvm.hotspot.debugger.useWindbgDebugger=true -classpath d:\java\
jdk1.7.0_03\lib\sa-jdi.jar sun.jvm.hotspot.tools.PermStat 5684
Attaching to process ID 5684, please wait...
Debugger attached successfully.
Client compiler detected.
JVM version is 22.1-b02
10713 intern Strings occupying 802608 bytes.
finding class loader instances ..
done.
computing per loader stat ..done.
please wait.. computing liveness..done.
class_loader classes bytes parent_loader alive? type

<bootstrap> 342 1539808 null live <internal>
0x23f7b398 3 28016 0x23f762e0 live sun/misc/Launcher$AppClassLoader
@0x38a0e9c0
0x23f762e0 0 0 null live sun/misc/Launcher$ExtClassLoader@0x389
eb420

total = 3 345 1567824 N/A alive=3, dead=0 N/A

LISTING 7 LISTING 8 LISTING 9 LISTING 10 LISTING 11 LISTING 12

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012
javascript:openPopup('listing8_p43')
javascript:openPopup('listing9_p43')
javascript:openPopup('listing10_p43')
javascript:openPopup('listing11_p43')
javascript:openPopup('listing12_p43')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

44

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

object just before these locations. If we
look carefully, these locations actually
go beyond the limits of the byte array
object, which should end at 0xc5036eb0,
and from address 0xc5036eb0, the
next object should have started. See
the raw contents at memory location
0xc5036ea0 in Figure 12.

We can look at the raw contents as
characters in the dbx debugger. See
Listing 13, which clearly shows that the
object at 0xc5036ea0 has a byte stream
that goes beyond its size limit of three
elements and overwrites the object

starting at 0xc5036eb0.
This gives us a big clue. Now, we can

easily search in the code where the bytes
“Hello Java.Hello Java. . .” are being writ-
ten, and find the buggy part of the code
that overflows a byte array. Listing 14
shows the faulty lines that I had in my JNI
code. Wow! This was so easy.

Summary
As in the example above, we in the JVM
Sustaining Engineering Group at Oracle
use the Serviceability Agent on a daily
basis to debug crashes, hangs, and other
kinds of problems that occur with the
Java HotSpot VM. SA is a pretty useful
and powerful debugging tool that can
also help you learn the internals of the
Java HotSpot VM. I hope this article pro-
vided good insight into this tool. Enjoy
debugging with SA! </article>

LEARN MORE
•	SA-Plugin for VisualVM

Figure 12

(dbx) x 0xc5036ea0/100c
0xc5036ea0: '\001' '\0' '\0' '\0' '\030' '\0177' '\020' '£' '\003' '\0' '\0' '\0'
'H' 'e' 'l' 'l'
0xc5036eb0: 'o' ' ' 'J' 'a' 'v' 'a' '.' 'H' 'e' 'l' 'l' 'o' ' ' 'J' 'a' 'v'
0xc5036ec0: 'a' '.' 'H' 'e' 'l' 'l' 'o' ' ' 'J' 'a' 'v' 'a' '.' 'H' 'e' 'l'
0xc5036ed0: '\003' '\0' '\0' '\0' 'a' 'v' 'a' '.' 'H' 'e' 'l' 'l' 'o' ' ' 'J' 'a'
0xc5036ee0: 'v' 'a' '.' 'H' 'e' 'l' 'l' 'o' ' ' 'J' 'a' 'v' 'a' '.' 'H' 'e'
0xc5036ef0: 'l' 'l' 'o' ' ' 'J' 'a' 'v' 'a' '.' 'H' 'e' 'l' 'l' 'o' ' ' 'J'
0xc5036f00: 'a' 'v' 'a' '.'

LISTING 13 LISTING 14

Download all listings in this issue as text

YOUR
LOCAL JAVA
USER GROUP
NEEDS YOU

Find your JUG here

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://visualvm.java.net/saplugin.html
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012
http://www.java.net/jugs/java-user-groups
javascript:openPopup('listing14_p44')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

45

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

CPUs aren’t getting faster.
Nearly ten years ago, we hit

3 GHz and I have yet to own a
4 GHz machine, much less the
43 GHz Moore’s Law promised
me. CPUs can do far more than
they used to, but they do it by
getting wider instead of faster—
more CPUs with more cores with
more threads.

While this is great for the end
user, it introduces new challenges
for application developers. I can
buy a 12-core desktop from Apple,
and even my small laptop has 2
cores now. The world is becoming
parallel, so we need new ways to
code for parallel machines.

Java has always had good sup-
port for concurrent programming
thanks to java.lang.Thread. The
Thread class has existed since the
first release of J2SE 5.0 introduced
the ExecutorService to ease the
management of groups of threads.
Unfortunately, threads mainly
help with I/O-bound tasks. That’s
fine for server-side jobs, such as
hosting Web apps, but modern

desktop apps need help with CPU-
bound tasks as well.

It is far harder to make CPU-
bound tasks maximize your
computer, especially on a general-
purpose operating system where
many other processes vie for CPU
time. To help with this, Java SE 7
introduced a new framework to
the concurrency utilities that can
help with CPU-bound tasks: the
fork/join framework.

The fork/join framework in Java
SE 7 is conceptually pretty simple.
You fork the current thread to
divide up your work, and then you
join the tasks back together to
collect the finished results. As we
will see below, coding with this
new framework is pretty easy. The
value of fork/join is what it does
under the hood.

Fork/Join Framework
The fork/join framework provides
three benefits over the Executor
interface.
■■ Fork/join is a natural fit for a

recursive algorithm, especially

if you don’t know
the scope of the
work beforehand.

■■ Fork/join provides
work-stealing
behavior that can
better balance the
workload across
multiple proces-
sors, and with less
lock contention.
Traditional algo-
rithms can max out
at about eight pro-
cessors before the
overhead of lock
contention out-
weighs the speed of
using more cores.
Fork/join can scale
to over 100 cores.

■■ Fork/join is future-
proof and portable. The code
you write with it doesn’t
assume anything about the
underlying hardware. It’s
designed to run your code as
efficiently as possible across
any hardware—both today’s

dual-core laptops
and single-core
phones, as well as the
100-core desktop of
the future.

Something Simple
To see how the fork/
join framework works,
let’s try something
simple. Every class
that uses the fork/join
framework works with
pretty much this algo-
rithm (see Listing 1):
If the amount of work
is below a threshold,
then do the work;
otherwise, split the
work in half and
recurse, waiting for
each half to complete.

This is the textbook divide-and-
conquer method.

To demonstrate how this works
in practice, I’ve created a simple
example that calculates the mini-
mum number from a very large
array of doubles (see Listing 2).

BIO

Fork/Join Framework for
Client Java Applications
Java SE 7’s fork/join framework makes a great match for CPU-intensive client-side applications.

ALGORITHM AT WORK

Every class that
uses the fork/join
framework works
with pretty much
this algorithm: If the
amount of work is
below a threshold,
then do the work;
otherwise, split
the work in half and
recurse, waiting
for each half to
complete.

JOSH MARINACCI

PHOTOGRAPH BY
CHRIS PIETSCH/GETTY IMAGES

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
javascript:openPopup('bio_p45')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

46

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

The compute method in Listing 2
implements the algorithm I described in
Listing 1. If the number of doubles to be
searched is less than a threshold (100),
then calculate the minimum; otherwise,
recurse on each half and wait for them
to join (complete). Once you have the
result of each half, calculate the mini-
mum of those and return it.

The MinimumFinder class implements
the RecursiveTask<Double> interface,
which is one of two interfaces defined
by the fork/join framework. The other
interface, RecursiveAction, is identical
except that its compute method doesn’t
return anything.

The magic is in the join() method. It
will wait for the subtasks to complete.
Figure 1 shows a simple benchmark of
the time it takes to search through 30
million random numbers using a single
core or the two cores on my laptop. I
calculated the average over 10 runs for a
single core, and then switched to doing

it again with two cores and repeated that
six times. By duplicating and averaging, I
can ensure that I get reliable results.

You can see in Figure 1 that the single-
core time hovers around 190 ms and the
dual-core time hovers around 122 ms,
which means that two cores take only
64 percent of the single-core time. The
improvement is not quite the double
that we might hope for when using two
cores, but it’s pretty good.

Why weren’t the dual-core results
exactly twice as fast (95 ms)? There are
a few reasons. First, there is overhead
involved in using the fork/join frame-
work. For small tasks, it’s simply not
worth the overhead. Unfortunately, most
tasks for which it’s worth the overhead
are also too complicated to use as exam-
ples, which is why many of the fork/join
tutorials on the Web demonstrate some-
thing like calculating the Fibonacci series.
Calculating the Fibonacci sequence with
recursion is actually a horrible example
because it’s not very efficient—you won’t
get a 2x speedup, and there are much
better nonrecursive ways to do it faster.

That said, how could we improve
this demo to better show the value of
multicore? Let’s make the algorithm do
more work so that the fork/join over-
head is less of a factor. I kept the same
code but added a line that does three
multiplications per value in the array.
Because multiplication is much slower
than comparisons, this should increase
the calculation time a lot. Figure 2 shows
the results of the next run, now slow
enough to take nine minutes on my
laptop for the entire run.

Figure 1

Figure 2

 compute() {
 if (work.size < threshold) {
 return doWork(work);
 } else {
 f1 = fork(first half of work)
 f2 = fork(second half of work)
 wait for the forks to join
 }
 }

LISTING 1 LISTING 2

Download all listings in this issue as text

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012
javascript:openPopup('listing2_p46')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

47

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

The dual-core version takes about 55
percent of the time that the single-core
version takes. That’s within about 10
percent of perfect efficiency, and it con-
stantly pegs my CPU. Excellent!

This example is fine for learning the
API, but what could we actually do with
this in the real world—especially when
it comes to client-side applications? The
first thing that comes to mind is graph-
ics. A lot of complex graphics rendering
is very easy to make parallel. Let’s take a
look at one of the most common CPU-
intensive kinds of graphics: fractals.

Parallel Mandelbrot Graphics
The Mandelbrot set is often consid-
ered the classic fractal or at least the
most widely known. Every pixel in the
Mandelbrot set can be calculated inde-
pendently of the others, which makes it
a great target for parallel computation.

It also has another inter-
esting attribute: the work
isn’t smooth. To calculate a
pixel in the fractal, you run
a simple equation over and
over again until the value
exceeds a certain threshold.
This is called escaping. The
color of the pixel is based
on how many times through
the loop it took for the
value to escape. If the loop goes on long
enough (another threshold value), then
we can say that the pixel never escapes
and mark it as black. Figure 3 shows a
classic Mandelbrot set fractal.

Take a look at this picture of the
Mandelbrot set. The center part is filled

with pixels that never escape. This
means they each went through the
loop the same number of times (to the
threshold), so the work required to cal-
culate those pixels is always the same.

The colored pixels, however, escaped
sometime before the limit. This means
that these pixels required less work than
the maximum amount. Of course, the
black pixels are boring. It’s the varying
colored pixels that are interesting, so
the part we want to look at has the most
varied workload. The fork/join frame-
work is the perfect way to parallelize this
workload efficiently.

A regular parallel algorithm for the
Mandelbrot set would divide the picture
into rows of pixels, allocating a thread
for every set of rows. So what would hap-
pen if one set of rows happened to take
longer than the other set? This will hap-
pen if one row in the fractal has more

black in it than another.
If we used a regular

thread pool, one of the
threads would be done
before the others and would
just sit around being idle.
A fork/join thread pool
wouldn’t, however, because
of a very unique property:
work stealing. If one of the
threads is idle because it

has finished its work, it can steal some
work from another thread. The frame-
work will automatically load balance
across the set of threads, making sure
it’s always crunching on something and
maximizing the CPUs.

Let’s look at the Mandelbrot set using

a fixed thread pool versus the fork/join
framework. Figure 4 is a graph of the
results of the fixed thread pool versus
the fork/join framework for a 4,000 x
4,000 pixel fractal.

We can loosely group workloads into
two categories: smooth and lumpy.
With a smooth workload, all units of
work take about the same effort (time)
to complete, whereas lumpy workloads
take variable—often highly variable—
amounts of effort. You can see this effect
in Figure 4. While both versions are
faster when using two cores, the fork/
join version finishes faster than the pool
version. The pool version is only a tiny
bit faster with two cores than with one
core because the work is lumpy. On a
two-core machine, the first thread fin-
ishes three times faster than the second
thread, but because it is a fixed pool,
you are limited by the time of the slow-
est thread. The fork/join version doesn’t
have this problem with lumpy workloads
thanks to work stealing.

Oracle’s concurrency expert, Brian
Goetz, explains it this way:

“If you’ve got a problem of size N
with p processors, when you divide
into problems of size N/p you are sure
to get lumpiness. Some will finish first
and those CPUs will then be idle. If you
make subproblems of, say, N/10*p, the
single work queue becomes a sequential
bottleneck as multiple threads contend
for ‘get next chunk of work.’ Even if your
problem is evenly balanced to start,
things like cache misses, page faults,
GC, etc., will cause different ones to run
at different rates. You get lumpiness.
Fork/join says: rather than sweating the
lumpiness, let work stealing iron it out
for you.”

A quick note on this example. I am
using a buffered image to store the
pixels. Each loop would call image.setRGB
for each result pixel. Commenting out
the image.setRGB line speeds up my test
of even the single-core version from
an average of 5,000 ms to 3,900 ms.

Figure 3 Figure 4

PERFECT FIT

Fork/join is a natural
fit for a recursive
algorithm, especially if
you don’t know the scope
of the work beforehand.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

48

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

Something in the way buff-
ered images work is very slow
compared to just setting an
array value. This shows that
the things we think are slow
aren’t always the culprit. In
this case, I could improve the
general code performance a
lot by using an array of inte-
gers and then converting to
an image after the work is
done. The lesson here is that
we must always profile our
code to figure out where it is
really slow.

Image Segmentation
For a final example, I chose something
a little bit different: image segmenta-
tion. Many algorithms in image process-
ing, from compression to computer
vision, begin with the step of dividing
the image into chunks that are simi-
lar. This is called image segmentation.
Once an image is segmented, you can

perform lots of additional
processing to find human
faces, look for object edges,
and do many other things; so
it’s good to have fast image
segmentation.

One simple form of image
segmentation uses a quadtree
graph. To segment the image,
you start by looking at a large
square section of the image
(usually the entire image)
and determine if the pixels
in that square are similar
enough using a threshold
value. If so, then the square
can be represented with a

single color value. If they are not similar
enough (which is most likely, initially),
then subdivide the square into four
smaller squares and repeat. Eventually,
this recursive algorithm will reach small
enough squares so that the pixels within
are similar, or you reach a square the
size of a single pixel (which of course is
similar to itself). The resulting graph of
nested squares is called a quadtree (the
three-dimensional version of it is called
an octree).

Figure 5 shows an image with the
quadtree graph overlaid on top. You can
see that there are more small squares in
the parts with more detail.

Some of the squares in the quadtree
will be larger than others, because
that part of the image had more simi-
lar pixels. The parts of the image with
more different pixels will have smaller
squares and will be deeper in the graph.
This means the graph construction Figure 5

IMAGE HANDLER

The new fork/join
framework is a
great match for
CPU-intensive
client-side
applications,
such as image
manipulation and
image generation.

YOUR
LOCAL JAVA
USER GROUP
NEEDS YOU

Find your JUG here

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.java.net/jugs/java-user-groups
http://www.java.net/jugs/java-user-groups

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

49

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

process will be lumpy. Some parts of
the image will take longer to process
than others, using more CPU. Most
importantly, we don’t know beforehand
which parts of the image will take lon-
ger, so we can’t evenly divide the work
among CPUs without the work-stealing
behavior of the fork/join framework.
So, image segmentation boils down to
recursive graph construction comparing
lumpy image data to a threshold value.
Sounds perfect for fork/join.

Take a look at Listing 3 to see a demo
app and performance tests. I adapted
this example from the code presented
in this Dev.Mag article. I don’t include
the code for the entire project; I provide
just the interesting parts. As a side note,
it only took about five minutes to paral-
lelize the original code. The fork/join
framework plays very nicely with recur-
sive algorithms.

I ran this app on my dual-core laptop
(with a larger 2,000 x 3,000 test image)
set to run with different amounts of

threading. See Figure 6, which shows the
runtimes with different thread counts.

You can see that the speedup between
a single thread and two threads is quite
significant. It doesn’t speed up after
that, of course, because I have only two
physical cores. However, it doesn’t slow
down much either. This shows that the
fork/join framework can do its job with
minimal overhead.

Conclusion
The fork/join framework doesn’t actu-
ally make the Java Virtual Machine run
faster. It simply presents a more con-
venient way to express parallel algo-
rithms so that your code can run more
efficiently than if you had to split it up by
hand. The real point of fork/join is that
you have to worry only about your algo-
rithm, not how it’s implemented. Your
code could run on one core or a hun-
dred, and you don’t have to care. The
system will maximize efficiency for you,
now and in the future. This makes the
new fork/join framework a great match
for CPU-intensive client-side applica-
tions, such as image manipulation and
image generation. </article>

LEARN MORE
•	 Josh on Design

•	Fork/join framework

•	“Showtime! Java 7 Is Here!”

•	“Meet JavaMan”

•	“�Fork and Join: Java Can Excel at Painless
Parallel Programming Too!”

Figure 6

The following listing has been excerpted for space, as noted by the . . . symbol. The full
code listing is available by downloading the code listings for this issue.

public class Node {
...
 protected void compute() {
 if(w <= 1 || h <= 1 || measureDetail(grid,x,y,w,h) <= threshold) {
 color = average(grid,x,y,width,height);
 } else {
 children[0] = new Node(grid,x,y,w/2,h/2,threshold);
 children[1] = new Node(grid,x+w/2,y,w-w/2,h/2,threshold);
 children[2] = new Node(grid,x,y+h/2,w/2,h-h/2,threshold);
 children[3] = new Node(grid,x+w/2,y+h/2,w-w/2,h-h/2,threshold);
 invokeAll(children);
 }
 }
 Color average(int[][] grid, int x, int y, int w, int h) {
 int redSum = 0; int greenSum = 0; int blueSum = 0;
 int area = w*h;
 for(int i=x; i<x+w; i++) {
 for(int j=y; j<y+h; j++) {
 redSum += getRed(grid[i][j]);
 greenSum += getGreen(grid[i][j]);
 blueSum += getBlue(grid[i][j]);
 }
 }
 return new Color(redSum/area,greenSum/area,blueSum/area);
 }
 int measureDetail(int[][] grid, int x, int y, int w, int h) {
 Color avg = average(grid, x, y, w, h);
 int red = avg.getRed(); int green = avg.getGreen(); int blue = avg.getBlue();
 int area = w * h; int colorSum = 0;
 for(int i=x; i<x+w; i++) {
 for(int j=y; j<y+h; j++) {
 colorSum += Math.abs(red-getRed(grid[i][j]));
 colorSum += Math.abs(green-getGreen(grid[i][j]));
 colorSum += Math.abs(blue-getBlue(grid[i][j]));
 }
 }
 return colorSum / (3 * area);
 }

LISTING 3

Download all listings in this issue as text

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://devmag.org.za/2011/02/23/quadtrees-implementation/
http://www.joshondesign.com/
http://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
http://www.oraclejavamagazine-digital.com/javamagazine/premiere2011?folio=20
http://www.oraclejavamagazine-digital.com/javamagazine/20120304?folio=30
http://www.oracle.com/technetwork/articles/java/fork-join-422606.html
http://www.oracle.com/technetwork/articles/java/fork-join-422606.html
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

50

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

For Java developers who want
to work with the language and

platform they love, the last two
years have been groundbreaking
ones. Java SE 7 was released after a
long five-year wait and—crucially
for developers interested in Java
and the Java Virtual Machine
(JVM) itself—the OpenJDK
project became the Reference
Implementation (RI) for Java.

In addition to the RI code base
becoming fully open source, great
progress was made in simplifying
the complex build process, and
most developers are now able to
build the OpenJDK with a simple
one-line command.

Last, the existing OpenJDK
committers continued their out-
reach to the wider Java commu-
nity, encouraging participation.
Today, the OpenJDK is more open
than ever and the barriers to entry
have been significantly lowered.

In late April 2012, the London
Java Community launched the
Adopt OpenJDK program. This
program is a group of projects
and events led by Java user groups
(JUGs) that aims to channel into
the OpenJDK the efforts of the
wider Java community (those

members of the Java commu-
nity that are not already directly
involved in the OpenJDK, such as
Oracle, Red Hat, IBM, and many
others), while keeping in mind a
“do no harm” policy.

Flooding the OpenJDK project
with thousands of patches a week
and demanding acceptance of
ill-thought-out language features
would not make for a better Java.
For the Adopt OpenJDK program,
doing no harm means producing
well-thought-out, peer-reviewed
bug fixes and new features that
are backed by empirical evidence
and coordinated with the core
OpenJDK committers.

Why such a formal/strict
approach? The OpenJDK is
now the heart of a vital piece of
technology that (in application
software terms) runs large parts
of our entire civilization, affect-
ing billions of people daily. So,
changes to it need to be made
with a great deal of care and
with as much scientific rigor and
empirical analysis as possible.

That’s not to say that the
day-to-day developer can’t get
involved, and this article takes you
through implementing a relatively

simple new language syntax fea-
ture, the Elvis operator. It high-
lights some of the technical steps
that you would take if you were to
tackle one of the more advanced
projects in the Adopt OpenJDK
program. Of course, to add a lan-
guage feature, you also would have
to fulfill the requirements of the
OpenJDK process by submitting a
JDK Enhancement Proposal (JEP).

Overview of Compilation
Using javac
The Java compiler, javac, takes
a set of Java source files (.java)
as input and produces the cor-
responding .class files as output.
You need to understand the basics
of javac compilation in order to

add features to Java. This process
is performed in three distinct
phases, as shown in Figure 1. We’ll
just give you a quick overview
of the three compilation phases
here; for more details, see the
OpenJDK documentation.
Parse and Enter phase. As a first
step, the javac lexer reads the Java
source files (as an input stream of
characters) and maps these into
a sequence of tokens. The parser
takes these tokens and gener-
ates Abstract Syntax Trees (ASTs)
representing the source program.
These trees are made of AST
nodes that represent the differ-
ent constructs in the source code,
such as method declarations,
statements, and so on.

How to Modify javac
Learn the steps for changing javac to implement new language syntax features.

RAOUL-GABRIEL URMA,
JANINA VOIGT, AND
MARTIJN VERBURG
BIO

MARTIJN VERBURG’S
PHOTOGRAPH BY BOB ADLER

Analyze
Attribution
Flow Analysis
Generics
Desugaring

Generate

.class files

.java files

Parse Enter Annotation
Processing

Figure 1

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://openjdk.java.net/
http://openjdk.java.net/
http://www.meetup.com/Londonjavacommunity/
http://www.meetup.com/Londonjavacommunity/
http://java.net/projects/jugs/pages/AdoptOpenJDK
http://www.java.net/jugs/java-user-groups
http://openjdk.java.net/jeps/1
http://openjdk.java.net/groups/compiler/doc/compilation-overview/index.html
javascript:openPopup('bio_p50')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

51

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

For example, consider the simple
expression 2 + 2 * 5. We can repre-
sent this expression as the AST shown
in Figure 2. The tree structure makes
it clear how (and in what order) the
expression is evaluated.

Once the parser has generated ASTs,
any symbols defined by the program are
entered into the symbol table. For each
class, all symbols defined by the class
are entered into the class’ scope.
Annotation Processing phase. In the
second phase, any annotations in the
program are processed by calling the
relevant annotation processors. Each
annotation processor is loaded and run
in a separate class loader. It is possible
that running an annotation processor
generates additional source files; if this
happens, the Parse and Enter phase
might need to be repeated.
Analyze and Generate phase. Next,
javac analyzes the ASTs before generat-
ing .class files. The analysis of the ASTs
entails the following steps:
1.  �Attribution of ASTs: Names and

expressions in the ASTs are resolved,

type checking is performed, and
constant expressions are simpli-
fied (a process known as constant
folding). Many semantic errors can
be discovered during this phase,
including type errors and missing
symbols.

2.  �Flow analysis: The javac compiler
checks that all statements are reach-
able and performs exception analysis
to ensure that every checked excep-
tion that is thrown is either declared
or caught. It also analyzes assign-
ments to ensure that each variable
is assigned a value before it is used
and that final variables are assigned
values only once.

3.  �Generics: Code that includes generics
is translated into code without gener-
ics to comply with type erasure.

4.  �Syntactic desugaring: The javac
compiler rewrites the syntax trees to
remove syntactic sugar, such as inner
classes, assertions, and for-each
loops.

If all the checks above pass, javac
generates .class files containing

Java bytecode.

Adding the Elvis
Operator to Java
In this section, we’ll show
you, step by step, how to
modify javac to imple-
ment the Elvis operator.

The Elvis operator, ?:
(look at it sideways to see
where it got its name),
is useful for returning a
default value when a vari-

able is null. As explained in “Elvis and
Other Null-Safe Operators,” it is a binary
operator and “results in the value of the
left-hand side if it is not null, avoiding
evaluation of the right-hand side. If the
left-hand side is null, the right-hand side
is evaluated and is the result.”

For example, suppose we have a
String foo:

It returns the String value stored in
foo if foo is not null; otherwise, it returns
default.

Using the existing ternary operator
(which has a very similar syntax), the
previous statement is equivalent to this:

The Elvis operator is available in
several other JVM languages, including
Groovy and Scala, but not in Java itself.
It was proposed as an addition to JDK 7
as part of Project Coin but was not
included in the final feature selection. As
we noted earlier, adding even seemingly
simple language features needs to be
weighed carefully.

Building the Java Compiler
Building javac is fairly simple. Visit the
OpenJDK compiler group for an over-
view. We’ve distilled the steps below:
1.  �If it is not already installed, install a

Mercurial DVCS client for your operat-
ing system.

2.  �If it is not already installed, install the
ANT build tool.

3.  �Go to the command line (or your
Mercurial GUI client).

4.  �Enter the following command:

Once the code has been cloned into
the <dir> directory, do the following:
1.  �Enter the following command:

2.  �Edit the build.properties file and set
boot.java.home to an installation of
the JDK you already have.

3.  �Enter the following command:

The build should complete with a
message similar to the following:

Modifying the Java Compiler
The implementation of the Elvis opera-
tor in the Java language requires several
steps:
1.  �Modify the lexer so that it recognizes

the Elvis operator.
2.  �Modify the parser so that it generates

an AST node representing the Elvis
operator.

3.  �Provide a translation of the Elvis oper-
ator in Java bytecode.

However, this process can be simpli-
fied slightly because the Elvis operator
can be converted to an existing language

foo ?: "default"

(foo != null) ? foo : "default"

hg clone http://hg.openjdk.java.
net/jdk8/tl/langtools <dir>

cd <dir>/make

ant

BUILD SUCCESSFUL
Total time: 1 minute 2 seconds

*

+

2
2

5

Figure 2

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://mail.openjdk.java.net/pipermail/coin-dev/2009-March/000047.html
http://mail.openjdk.java.net/pipermail/coin-dev/2009-March/000047.html
http://openjdk.java.net/projects/coin/
http://openjdk.java.net/groups/compiler/
http://mercurial.selenic.com/
http://ant.apache.org/

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

52

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

feature: the ternary operator. Therefore,
we can just modify the parser so it gen-
erates a ternary operator AST node. We
can then rely on the translation phase
to recognize this node and translate it
to correct Java bytecode without provid-
ing our own translation implementation
(this process is called AST translation).
Let’s begin with the first step, the lexer
modification.
Lexer modification. First, let’s add the
Elvis operator so it is recog-
nized as a new token. We do
this by modifying the com.sun
.tools.javac.parser.Token class,
inserting the Elvis operator
as a new token value. See
Listing 1.

All the tokens are auto-
matically added to a keyword
table, which is defined in the
com.sun.tools.javac.parser
.Keywords class. The Keywords
class maps all token names
(the value passed into the
Token constructor) to their
Token instance.

The keyword table is then
used by the Java lexer to map
an input stream of characters
into a token sequence. The
lexer interface is specified in
com.sun.tools.javac.parser.Lexer and it
contains various methods, such as the
following:
■■ pos(), which returns the current posi-

tion of the lexer
■■ nextToken(), which reads the next

token
■■ token(), which returns the current

token, typically using the default
implementation that lies in com.sun
.tools.javac.parser.Scanner

Parser modification. We now modify
the Java parser so that it recognizes
expressions of the form Expression1 ?:
Expression2. The implementation for this
is defined in com.sun.tools.javac.parser
.JavacParser.

There’s a method in JavacParser called
parseExpression(), which parses expres-

sions. It processes the token
stream it gets from the Java
lexer and returns AST nodes
as output.

Each AST node is a subclass
of com.sun.tools.javac.tree
.JCTree. Since parseExpression()
deals only with expressions,
it outputs a JCExpression (a
subtype of JCTree) that rep-
resents expression nodes.
Other kinds of nodes are rep-
resented by other subclasses
of JCTree. For example, state-
ment nodes are represented
by JCStatement.

The TreeMaker class is
a factory for AST nodes;
JavacParser has a field called F
of type TreeMaker that we can
use in our code to easily cre-

ate various kinds of AST nodes.
The parseExpression() method is

defined as shown in Listing 2 and essen-
tially sets the parser mode to expect
expressions (EXPR). It then calls term()
to parse and create expression nodes of
type JCExpression.

The term() method distinguishes

between assignment expressions and
other types of expressions. For example,
x = 1 and x /= 5 are assignment expres-
sions; x++ counts as another expression.

If term() discovers an assignment
operator in the expression, it parses the
left-hand side and the right-hand side
of the assignment separately by first
calling term1() and then termRest(); of

course, both of the sides can be made
of subexpressions. For all other kinds of
expressions, all the parsing is delegated
to term1(), which we’ll look at more
closely now.

The term1() method is defined as
shown in Listing 3.

We can see that term1() delegates
most of its work to yet another helper

Download all listings in this issue as text

BIG IMPACT

The OpenJDK is
now the heart
of a vital piece
of technology
that (in application
software terms)
runs large parts
of our entire
civilization,
affecting billions
of people daily.

public enum Token implements Formattable {
 EOF,
 ERROR,
...
 QUES("?"),
 ELVIS("?:"), // <---
 COLON(":"),
...
}
com.sun.tools.javac.parser.Token

LISTING 1 LISTING 2 LISTING 3

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012
javascript:openPopup('listing2_p52')
javascript:openPopup('listing3_p52')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

53

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

method, term2(). Fortunately for us,
we won’t need to look more closely at
term2() here, because term1() handles
the parsing of the ternary operator. If
term1() finds a question mark token
(QUES), it knows it’s dealing with a ter-
nary operator. The first part (before the
question mark) has already been parsed
by term2(); the remaining two parts
(before and after the colon) are then
parsed by term1Rest().

The Elvis operator is very similar to
the ternary operator, so term1() is a good
place to parse it. So if we find an Elvis
token here, we parse the expression as
an Elvis operation, as shown in Listing 4.

Our task now boils down to pro-
viding the implementation for
term1Elvis(JCExpression). As explained
previously, we can simply convert an
Elvis operation into a ternary operation.
Thus, term1Elvis(JCExpression) should
parse the right-hand side of the expres-
sion (which follows the ?: token) and
then create an AST node representing
a ternary operation of the form expr1 !=
null ? expr1 : expr2.

We already have an AST node for the
left-hand side of the Elvis operation
(passed as argument expr1). We then
parse the right-hand side by calling
term() and store this in expr2.

The next step is to construct an AST
node representing the conditional
expression expr1 != null. Now we have
the three pieces that are required, so
we can just create the ternary operation
AST node. This is done by calling the
Conditional method of the TreeMaker and
passing in the conditional node and the

nodes representing the left-hand side
and right-hand side of the expression.

The final implementation of
term1Elvis() is shown in Listing 5.

Now that you’ve finished the imple-
mentation, rebuild the javac compiler,
per the “Building the Java Compiler“
section. Congratulations; you can now
use the Elvis operator in your code with
your shiny new Java compiler!

Testing
Of course, as with any software, we need
to ensure that there’s some level of test-
ing. (Some would argue we could have
used test-driven development here,
but we were influenced by Martijn, the
Diabolical Developer.)

So, let’s write a basic test to see if
the Elvis operator works as desired. See
Listing 6.

The code in Listing 6 should print the
word unknown.

Note that because we simply trans-
lated our Elvis operator into a ternary
operator, we don’t need to worry about
things like type checking. For example,
the code in Listing 7 doesn’t compile (as
expected). The error shown in Listing 8
is reported.

Conclusion
Adding the Elvis operator is a fun exam-
ple of adding a small language feature at
the level of the javac compiler. If this was
a serious attempt at getting this feature
into the OpenJDK, you would have to
apply more-rigorous proof that the code
was correct and safe as well as providing
empirical evidence (such as using the

Qualitas Corpus) that this feature would
be utilized by developers. The partici-
pants in the Adopt OpenJDK program
are there to help with all of that.

We hope you enjoyed this journey
into javac, and we hope to see you in the
Adopt OpenJDK program working on the
language and the platform that we all
share. </article>

Raoul-Gabriel Urma and Janina Voigt
are PhD students from the department
of Computer Science at Cambridge

University, U.K. They have embarked on
several research topics related to Java
and have joined the Adopt OpenJDK
program. They have very kindly made
some of their research and methodology
available to share with fellow developers.
It’s been a pleasure to collaborate on this
article with them; I certainly learned a
great deal. —Martijn Verburg

Download all listings in this issue as text

 JCExpression term1() {
 JCExpression t = term2();
 if ((mode & EXPR) != 0 && S.token() == QUES) {
 mode = EXPR;
 return term1Rest(t);
 }
 else if ((mode & EXPR) != 0 && S.token() == ELVIS)
 {
 mode = EXPR;
 return term1Elvis(t);
 }
 else {
 return t;
 }
 }

LISTING 4 LISTING 5 LISTING 6 LISTING 7 LISTING 8

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://qualitascorpus.com
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012
javascript:openPopup('listing5_p53')
javascript:openPopup('listing6_p53')
javascript:openPopup('listing7_p53')
javascript:openPopup('listing8_p53')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

54

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//rich client /

JavaFX 2 is an API and run-
time for creating rich internet

applications (RIAs). It was intro-
duced in 2007, and version 2 was
released in October 2011. One of
the advantages of JavaFX 2 is that
the code can be written in the
Java language, using mature and
familiar tools.

This article is Part 2 of a two-
part series and focuses on opti-
mizing JavaFX 2 properties and
binding by implementing lazy
evaluation, lazy initialization, and
custom bindings.

As discussed in the previous
article, “Using Properties and
Binding in JavaFX 2.0: Part 1,”
JavaFX 2 comes with a set of inter-
faces, which are shown in Figure 1.
The purpose of these interfaces is
to provide support for using and
implementing properties, detect-
ing when the values of properties
have changed, and binding prop-
erties to other properties.

These interfaces are located in
four packages:
■■ javafx.beans

■■ javafx.beans.binding
■■ javafx.beans.property
■■ javafx.beans.value

This article contains an example
of using the methods defined by
many of these interfaces to imple-
ment lazy evaluation, lazy initial-
ization, and custom bindings.

Overview of the
LazyInitEvalSolution
Application
To help you learn how to use
properties and binding, an
example application named
LazyInitEvalSolution will be
employed. As shown in Figure 2,
this application contains three
stopwatches, and each has
some buttons and elapsed and
lap time displays.

The LazyInitEvalExercise
project that you’ll download
in the next section contains
starter code for the example
application. In its current
form, the application’s run-
time appearance is similar to
Figure 2. During the course

of this article, you’ll modify the
code to implement the lazy
evaluation, lazy initialization,
and custom binding behavior of
the LazyInitEvalSolution project,
which is also available in the file
you’ll download.

As shown in Figure 3, when
you click the Start button on one
of the stopwatches, its elapsed
timer starts counting by millisec-
onds. In order to see the elapsed
time, however, you must click the
invalidate – click to bind/unbind

Optimize the evaluation of bindings and the initialization of properties the lazy way. JAMES L. WEAVER
BIO

Part 2

Lazy Evaluation, Lazy Initiation, and
Custom Bindings in JavaFX 2

Figure 1
PHOTOGRAPH BY
STEVE GRUBMAN

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/technetwork/java/javafx/downloads/index.html
http://www.oraclejavamagazine-digital.com/javamagazine/20120506?folio=51
http://www.oraclejavamagazine-digital.com/javamagazine/20120506?folio=51
mailto:james.weaver%40oracle.com?subject=
javascript:openPopup('bio_p54')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

55

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//rich client /

text. As you’ll see when we walk through
the relevant code, this demonstrates the
concept of lazy evaluation.

Also, when you click the Lap but-
ton, the lap time at that moment is

displayed. You may also click the Stop
button to cause the elapsed time to
stop increasing, and you may click the
Reset button to reset both the elapsed
and lap times.

Obtaining and Running the
LazyInitEvalExercise Project
1.  �Download the NetBeans project

file, which includes the
LazyInitEvalExercise program.

2.  �Expand the project into a directory of
your choice.

3.  �Start NetBeans, and select File ->
Open Project.

4.  �From the Open Project dialog box,
navigate to your chosen directory and
open the LazyInitEvalExercise project,
as shown in Figure 4. If you receive a
message stating that the jfxrt.jar file
can’t be found, click the Resolve but-
ton and navigate to the rt/lib folder
subordinate to where you installed
the JavaFX 2 SDK.
Note: You can obtain the NetBeans
IDE from the NetBeans site.

5.  �To run the application, click the Run
Project icon on the toolbar, or press
the F6 key. The icon looks like the Play
button on a DVD player, as shown in
Figure 5.

The LazyInitEvalExercise application
should appear in a window, as shown in
Figure 6.

The behavior of LazyInitEvalExercise
is different in a few ways from
LazyInitEvalSolution. For example, as
shown in Figure 6, clicking the Start but-
ton and then clicking the invalidate
text causes the elapsed time to be

displayed as an integer, rather than in
minutes:seconds:milliseconds format.
This is because LazyInitEvalSolution
uses a custom binding that you’ll imple-
ment in one of the steps below.

Below are the steps you can follow
to implement all of the behavior in
LazyInitEvalSolution.

Step 1: Gain an
Understanding of Lazy
Versus Eager Binding
Evaluation
A binding can be evaluated
in either an eager or a lazy
manner:
■■ When a binding is evalu-

ated in an eager man-
ner, the updated value of
the binding is calculated
whenever the binding is
invalidated.

■■ When a binding is evalu-
ated in a lazy manner, the
updated value of the bind-
ing is calculated only
when needed.
Take a look at the code in

the StopWatchNode.java file
in the LazyInitEvalExercise
project, which shows the
starter code for this example.
We’ll show code snippets
from LazyInitEvalMain.java
as you perform the steps in
this exercise.
Implementing lazy evalua-
tion in a binding. As shown in
Listing 1, some of the code in
StopWatchNode.java instan-

tiates a SimpleStringProperty, binds it
to the elapsedMillisProperty property of
the StopWatchModel class, and adds an
InvalidationListener to it.

As a result, when the value of elapsed-
TimeStrProperty is no longer valid, it isn’t
evaluated immediately; hence, the term
lazy evaluation.

Figure 2

Figure 4

Figure 5

Figure 3 Figure 6

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012
http://netbeans.org/downloads/

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

56

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//rich client /

Implementing eager evaluation in a
binding. As shown in Listing 2, when
the user clicks the invalidate – click to
bind/unbind text, the textProperty of the
elapsedNode is bound to the elapsed-
TimeStrProperty. This causes the bind-
ing to be evaluated in an eager manner,
because the elapsedNode (a Label con-
trol) gets and displays the value of the
elapsedTimeStrProperty whenever it is
invalidated.

By using a lazy evaluation strategy
when applicable, an application can
avoid unnecessary process-
ing, often improving per-
formance as a result. Let’s
move on to another optimi-
zation technique: lazy initial-
ization of properties.

Step 2: Implement Lazy
Initialization of a Property
A JavaFX property can be
initialized in either an eager
or a lazy manner. There are
several patterns for imple-
menting lazy initialization,
the two most popular being
half-lazy and full-lazy.

To see the eager initialization
approach, take a look at Listing 3, in
which you’ll see three properties defined
in the StopWatchModel.java file from
the LazyInitEvalExercise project.

By convention, each of these prop-
erties has setter, getter, and property
methods. For example, the lapMillis
property shown in Listing 3 has meth-
ods named setLapMillis(), getLapMillis(),
and lapMillisProperty(). The implemen-

tation of these methods causes the
SimpleIntegerProperty to be instantiated
the first time that the lapMillis prop-
erty is accessed via the setLapMillis(),
getLapMillis(), or lapMillisProperty()
method. This can be a waste of memory
resources, depending on how the prop-
erty is used in practice. Let’s explore
ways to optimize this, beginning with
half-lazy initialization.
Implementing a half-lazy initializa-
tion approach. As shown in Listing 4,
the half-lazy initialization approach

avoids instantiating the
SimpleIntegerProperty ref-
erenced by lapMillis when
the getLapMillis() is called.
It also avoids instantia-
tion when the setLapMillis()
method is called with the
lapMillis property’s default
value, which is held in
DEFAULT_LAP_MILLIS.

Go ahead and plug in the
code from Listing 4 into the
StopWatchModel.java file,
and we’ll discuss a more
aggressively lazy strategy.

Implementing a full-lazy initialization
approach. As shown in Listing 5, the
full-lazy initialization approach avoids
instantiating the SimpleStringProperty
referenced by name when the getName()
method is called. It also avoids instanti-
ation whenever the setName() method is
called. It does the latter at the cost of the
extra instance variable nameStr, but this
is a good approach when the property
won’t typically be used in a binding.

Go ahead and plug in the code from
Download all listings in this issue as text

private StringProperty elapsedTimeStrProperty = new SimpleStringProperty();

... code omitted ...

 elapsedTimeStrProperty.addListener(new InvalidationListener() {
 public void invalidated(Observable observable) {
 if (!elapsedNode.textProperty().isBound()) {
 elapsedNode.setText(“invalidated - click to bind/unbind”);
 }
 }
 });

 elapsedTimeStrProperty.bind(stopWatchModel.elapsedMillisProperty()
 .asString());

LISTING 1 LISTING 2 LISTING 3 LISTING 4 LISTING 5

BEING LAZY IS GOOD

By using a lazy
evaluation strategy,
an application can
avoid unnecessary
processing, often
improving
performance.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012
javascript:openPopup('listing2_p56')
javascript:openPopup('listing3_p56')
javascript:openPopup('listing4_p56')
javascript:openPopup('listing5_p56')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

57

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//rich client /

Listing 5 into the StopWatchModel.java
file. When you’re done, let’s move on to
the next concept, which involves creat-
ing a custom binding.

Step 3: Create a Custom Binding
As mentioned previously, the
elapsed time value is formatted
as an integer in Figure 6 but as a
minutes:seconds:milliseconds string
in Figure 3. This is accomplished by
using a custom binding instead of
the default binding provided by the
SimpleIntegerProperty.

To implement a custom binding,
our example defines a class named
TimeStringBinding that extends the
StringBinding class, which imple-
ments the Binding interface shown in
Figure 1. You can see the code for the
TimeStringBinding class in Listing 6.

As shown in Listing 6, to imple-
ment the custom binding we do the
following:
■■ Define a constructor with the input

arguments for the binding, calling the
bind() method of the superclass.

■■ Override the computeValue() method,
returning the desired output value for
the binding.
To use this custom binding in the

LazyInitEvalExercise project, com-
ment out the following lines in the
StopWatchNode.java file:

Then, add the following lines to
StopWatchNode.java:

For extra credit, also replace the
binding for the lapNode textProperty() in
a similar manner so that it appears as
shown in Figure 3.

Go ahead and run the
LazyInitEvalExercise application to verify
that the custom bindings cause the
elapsed time and lap time values to be
formatted as shown in Figure 3.

Conclusion
JavaFX 2 comes with numerous classes
and interfaces that provide a powerful
properties and bindings framework. You
can optimize the evaluation of bindings
and the initialization of properties by
using the lazy approaches demonstrated
above. In addition, you can define cus-
tom bindings when augmenting the
default behavior of the bindings in the
JavaFX 2 API as desired. </article>

elapsedTimeStrProperty.bind(
 stopWatchModel.elapsedMillisProp
erty()
 .asString()
);

elapsedTimeStrProperty.bind(
 new TimeStringBinding(
 stopWatchModel.elapsedMillis
Property()
)
);

LEARN MORE
•	“Using JavaFX Properties and Binding”

•	Michael Heinrichs’ blog, which includes
entries on JavaFX properties and bindings

Download all listings in this issue as text

package javafxpert.lazyiniteval.binding;

import java.text.SimpleDateFormat;
import javafx.beans.binding.StringBinding;
import javafx.beans.property.IntegerProperty;

public class TimeStringBinding extends StringBinding {
 private SimpleDateFormat timeFormat = new SimpleDateFormat("mm:ss:SSS");
 private IntegerProperty millis;

 public TimeStringBinding(IntegerProperty millisArg) {
 super.bind(millisArg);
 millis = millisArg;
 }

 @Override
 protected String computeValue() {
 int elapsedInt = millis.get();
 return timeFormat.format(elapsedInt);
 }
}

LISTING 6

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://download.oracle.com/javafx/2/binding/jfxpub-binding.htm
http://blog.netopyr.com/
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

58

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

From the beginning, application
servers were designed to pro-

vide shared resources to multiple
applications at the same time.
Scarce resources, such as CPU
time, file systems, or RAM, are
supposed to be shared between
applications. Fair resource shar-
ing, however, requires
some cooperation
from the deployed
applications.

One of the pro-
gramming restrictions
introduced with the
Enterprise JavaBeans
(EJB) 1.0 specification
was “An enterprise
bean is not allowed to
start new threads or
attempt to terminate
the running thread” (page 117).
Current restrictions on popular
cloud platforms are similar to the
Java EE programming model. You
could argue that application serv-
ers have been cloud-ready since
the advent of EJB 1.0 in 1998.
Note: Download the source
code for the sample application
described in this article.

Forbidden Threads
Without explaining why, EJB 1.0
prohibited the direct use of
threads and synchronization prim-
itives. The EJB 3.1 specification
is even stricter: “The enterprise
bean must not attempt to man-
age threads. The enterprise bean

must not attempt to
start, stop, suspend,
or resume a thread, or
to change a thread’s
priority or name. The
enterprise bean must
not attempt to manage
thread groups.”

The EJB 3.1 speci-
fication explains the
reason behind the
increased restriction:
“These functions are

reserved for the EJB container.
Allowing the enterprise bean to
manage threads would decrease
the container’s ability to properly
manage the runtime environ-
ment” (page 599).

In practice, application serv-
ers can easily prevent direct
Thread manipulation by activat-
ing the SecurityManager. In the

java.lang.Thread constructor, the
SecurityManager is asked for per-
mission. However, most appli-
cation servers operate without
SecurityManager, so applications
can easily violate the restrictions
without any consequences.

In addition, the statement
“Allowing the enterprise bean
to manage threads would
decrease the container’s ability
to properly manage the runtime
environment” is way too mild.
The uncontrolled creation of
threads affects not only scal-
ability and performance but
also robustness. Each thread
consumes memory. Having too
many threads eventually leads to
OutOfMemoryError occurrences
and not only affects the stability
of the application that starts the
threads, but can crash the entire
application server and all the
deployed applications.

On the other hand, the appli-
cation server reuses threads
from managed and monitored
pools. You can securely prevent
OutOfMemoryError occurrences by
regularly performing stress tests,

as described in “Stress Testing
Java EE 6 Applications,” and
using the results to configure the
application server thread pools. A
properly configured thread pool
will reject new requests to prevent
server overloading.

Web tier specifications, such
as Java Servlet 3.0, are more
liberal regarding thread man-
agement. There are no pro-
gramming restrictions related
to threading in the Servlet, Java
API for RESTful Web Services
(JAX-RS), or JavaServer Faces
(JSF) specifications. Moving
restricted threading code from
the business layer to the presen-
tation logic or Java Management
Extensions (JMX) beans does not
solve the problem at all. It’s just
a hack around the useful restric-
tions of the EJB specification.
Usually, the Web container and
EJB/Contexts and Dependency
Injection (CDI) container are
executed in the same Java Virtual
Machine (JVM). Uncontrolled
thread creation in the Web con-
tainer can also break the applica-
tion and crash the server.

Threading and Concurrency
Java EE 6 reflects that centralized management of scarce resources
is becoming more important.

PHOTOGRAPH BY
THOMAS EINBERGER/
GETTY IMAGES

THREAD CONTROL

The uncontrolled
creation of
threads affects
not only scalability
and performance
but also robustness.

ADAM BIEN
BIO

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012
http://jcp.org/en/jsr/detail?id=318
http://www.oraclejavamagazine-digital.com/javamagazine/20111112?sub_id=iafW9TEyyNSf#pg42
http://www.oraclejavamagazine-digital.com/javamagazine/20111112?sub_id=iafW9TEyyNSf#pg42
javascript:openPopup('bio_p58')
javascript:openPopup('audio_p58')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

59

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

@Asynchronous
Before Java EE 6, there was no easy
way to start threads legally. The Service
Activator pattern (mis)used Java
Message Service (JMS) to asynchro-
nously execute synchronous EJB beans.

Although Service Activator is concep-
tually a Gang of Four (GoF) Decorator
pattern, the J2EE realization was overly
complicated. You had to encode a
synchronous method call into a JMS
message in a proxy implemented as an
EJB bean. The JMS message was sent
with a temporary “response queue” to a
message-driven bean (MDB), which was
asynchronously invoked by the JMS run-
time. In the onMessage method, the JMS
message was decoded and the actual EJB
method was invoked asynchronously.

The MDB waited until the execution
of the actual method, converted the
return value into a JMS message, and
sent the message back to the proxy.
The implementation of this pattern
didn’t fit on a single page. The Service
Activator pattern can be summarized as
a local Remote Procedure Call over JMS.

With EJB 3.1 and Java EE 6, the whole
Service Activator implementation can
be replaced with a single annotation. To
execute a void method asynchronously,
annotate it with @Asynchronous:

Asynchronous methods can also
return an instance of java.util.concurrent
.Future:

The first sentence of the Javadoc for
Future perfectly explains its responsi-
bilities: “A Future represents the result
of an asynchronous computation.” A
Future instance is returned immedi-
ately, and you can use the Future#isDone
and Future#isCancelled methods to
check the progress. You can also use the
Future#get method to fetch the return
value. If the task is not completed, the
invocation of Future#get will block until
the result is computed.

Batch Processing
Using @Asynchronous for void meth-
ods feels natural. Future, on the other
hand, does not appear to be particularly
useful in a standard request-response
scenario. The method annotated with
the @Asynchronous annotation immedi-
ately returns a Future instance, but the
Future#get call blocks.

Instead of invoking the get method,
you could use isDone to check the avail-
ability of the result, but that is not opti-

mal either. The client would effectively
burn CPU cycles.

Future is a useful tool for the paral-
lelization of multiple task executions in
batch mode. An additional stateless EJB
bean is needed to execute the
@Asynchronous methods, cache the
Future in a List and, finally, gather the
results, as shown in Listing 1.

The first loop in Listing 1 submits
chunks of work to the application server’s
thread pool. The execute() method
immediately returns a Future instance,
which is stored in a java.util.List. In
the second loop, all Future instances
are asked for their results through the
Future#get call. Although the method
Future#get blocks, in N-1 cases, the call

will also return immediately.
The execution of the method

BatchTask#executeBatch will take as
long as the longest LongTask#execute
computation.

The code looks sequential, but it isn’t.
In each iteration of the first loop, a task
is passed to a worker pool to be executed
asynchronously. The for-each loop iter-
ates over Future instances and occasion-
ally blocks if the task is not computed
yet. However, during the wait time for a
computation result, all other tasks are
still executed in the background.

The Right Tool for Fire-and-Forget
@Asynchronous is a great tool for the
implementation of fire-and-forget use

@Stateless
public class LongTask {
 @Asynchronous
 public void execute(){
 //heavy lifting
 }
}

@Stateless
public class LongTask {
 @Asynchronous
 public Future<String> execute(){
 String result = ...;
// heavy lifting
 return new AsyncResult<String>
(result);
 }
}

Download all listings in this issue as text

@Stateless
public class BatchTask {
 @Inject
 LongTask lt;

 public void executeInBatch() {
 List<Future<String>> results = new ArrayList();
 //parallelize
 for(int i=0;i<10;i++){
 results.add(lt.execute());
 }
 //gather
 for (Future<String> resultProxy : results) {
 try {
 resultProxy.get(); // use the result, or not
 } catch (Exception ex) { }
 }
 }
}

LISTING 1

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.corej2eepatterns.com/Patterns2ndEd/ServiceActivator.htm
http://www.corej2eepatterns.com/Patterns2ndEd/ServiceActivator.htm
http://en.wikipedia.org/wiki/Decorator_pattern
http://en.wikipedia.org/wiki/Decorator_pattern
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

60

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

cases. All submitted tasks are queued
and executed with threads managed by
the application server. The task queue is
a transient data structure—in the event
of an application server crash, all sub-
mitted, but not yet processed, tasks will
get lost.

Because the task queue is transient,
an @Asynchronous method cannot be
used as a replacement for the Service
Activator pattern implemented with
persistent JMS queues.

If a transient thread queue is not an
option, you can use persistent single-
action timers for asynchronous invo-
cation. In the executeAsync method
exposed to the client, you have to regis-
ter a persistent single-action timer first,
as shown in Listing 2.

Even parameters can be passed to
the timer as a Serializable instance.
You have to wrap all parameters in a
Serializable holder to pass them to the
timer. Because the timer is configured to
be persistent, the application server has
to persist the information caller’s trans-
action prior to the timer execution. No
such overhead is needed for the
@Asynchronous methods, which results
in better performance.

Furthermore, the EJB 3.1 specifi-
cation does not define any overload
behavior for @Asynchronous invoca-
tions. The maximum number of
concurrent requests—and, thus,
threads—is unspecified. Most applica-
tion servers allow you to configure in a
proprietary way the thread pool dedi-
cated for the execution of the
@Asynchronous method.

Asynchronous Servlets
The Java Servlets 3.0 specification intro-
duced with Java EE 6 supports asyn-
chronous processing. From the HTTP
client perspective, there is no difference
between an asynchronous and a
“traditional” Servlet request. In both
cases, the client is blocked until the
request is completed.

An asynchronous request allows the
Web container to block the browser
connection without binding a thread.
The service method immediately returns,
but the AsyncContext instance can still
be used to send messages back to the
browser or another HTTP client (for
example, a JAX-RS client), as shown in
Listing 3.

To perform an asynchronous request,
the Servlet with all filters involved
in the invocation chain has to be
deployed with the asyncSupported=true
option activated. The method
HttpServletRequest#startAsync() puts the
request into asynchronous mode and
returns an AsyncContext instance imme-
diately. The behavior is similar to an
@Asynchronous method returning
the Future instance. An AsyncContext
instance effectively represents the
browser window (or the HTTP client)
and is used to communicate with the
client after the completion of the service
method (and doGet, doPost, and so on).

In Listing 3, the AsyncServlet sends
the AsyncContext as a CDI event.
The AsyncContext is received by the
EventBroker singleton EJB bean shown in
Listing 4.

The AsyncContext is stored in

the lock-free CopyOnWriteArrayList
contexts instance for future noti-
fications. Each invocation of the
EventBroker#onNewEvent method iterates
over all AsyncContext instances stored in
the contexts list, passes the String
message parameter, commits the
request with the AsyncContext#complete
method and, finally, removes the
AsyncContext from the list.

Each invocation of the onNewEvent
method effectively distributes the String

message parameter to all listening HTTP
clients. The invocation of the onNewEvent
method blocks until the message arrives
at the client. It is a classic fire-and-
forget call, so you can easily perform the
call in the background by annotating the
method with the @Asynchronous anno-
tation. In the sample application, the
String message event is fired in a JAX-RS
resource (see Listing 5).

Usually, you would not want to expose
the HTTP API directly to EJB beans

@Stateless
public class PersistentAsynchronous {
 @Resource
 TimerService ts;
 public void executeAsync(String message){
 TimerConfig config = new TimerConfig(message, true);
 ts.createSingleActionTimer(1, config);
 }
 @Timeout
 public void execute(Timer timer){
 String message = (String)timer.getInfo();
 //do some work
 }
}

LISTING 2 LISTING 3 LISTING 4 LISTING 5

Download all listings in this issue as text

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012
javascript:openPopup('listing3_p60')
javascript:openPopup('listing4_p60')
javascript:openPopup('listing5_p60')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

61

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

in the business layer and wrap the
AsyncContext in a neutral wrapper. In the
open source project LightFish, the class
BrowserWindow is used to push GlassFish
monitoring data to the JavaFX 2 client,
as shown in Listing 6.

JCA—If You Want More
Java EE Connector Architecture (JCA) 1.6
connectors give you the most control
over concurrency in a “legal,” convenient,
and monitorable way. Furthermore, JCA
connectors are managed by the applica-
tion server, which usually gives you many
configuration options. Building a JCA 1.6
connector is not trivial, but it can be
achieved in a few hours.

The implementation of the
ResourceAdapter receives the
BootstrapContext in the overridden start
method, which gives you access to the
WorkManager instance. You can safely
ignore all other methods defined in the
ResourceAdapter interface (see Listing 7).

You only need to compile the class
shown in Listing 7, put it into a JAR
file, change the .jar extension to
.rar, and deploy the connector. The
application server would create the
WorkManagerBootstrap connector and
pass the BootstrapContext with which the
WorkManager instance can be obtained.

A WorkManager allows you to execute
javax.resource.spi.work.Work instances
that extend the Runnable interface. This
solution would work, but your applica-
tion would not be able to get a refer-
ence to the WorkManager without nasty
hacks. However, this implementation
would be sufficient to implement a

manageable network server.
JCA connectors work in a connection-

oriented way, so you will have to
implement at least two additional inter-
faces: javax.resource.spi
.ManagedConnection and javax.resource
.spi.ManagedConnectionFactory.
Fortunately, you can implement both
interfaces once and reuse them for mul-
tiple JCA connector implementations.

The class ConnectionFactory (see
Listing 8a and Listing 8b) exposes the
meta-data to the runtime using the
@ConnectionDefinition annotation and,
together with the @Connector annotation
on the WorkManagerBoostrap (see
Listing 7), makes the Resource Adapter
Archive (RAR) XML deployment descrip-
tor obsolete.

The WorkManagerBootstrap is instan-
tiated once at connector deployment
time and is effectively a singleton. The
ConnectionFactory needs an instance
of the WorkManager stored inside the
WorkManagerBootstrap.

JCA 1.6 SPI comes with a useful
interface, javax.resource.spi
.ResourceAdapterAssociation, which
is used by the container to associ-
ate the ResourceAdapter implementa-
tion (WorkManagerBootstrap) with the
ManagedConnectionFactory implementa-
tion. After casting the ResourceAdapter
to WorkManagerBootstrap, the
ConnectionFactory can access the
WorkManager instance that is needed for
asynchronous execution.

The ConnectionFactory is just the
necessary plumbing for managing and
pooling the connections properly. The

public class BrowserWindow {

 private AsyncContext asyncContext;
 private final ServletResponse response;
 private String channel;

 public BrowserWindow(AsyncContext asyncContext) {
 this.asyncContext = asyncContext;
 this.response = this.asyncContext.getResponse();
 this.response.setContentType("application/xml");
 }

 public BrowserWindow(AsyncContext asyncContext,String channel){
 this(asyncContext);
 this.channel = channel;
 }

 public void send(){
 try{
 this.asyncContext.complete();
 }catch(Exception e){ }
 }

 public Writer getWriter(){
 try {
 return this.asyncContext.getResponse().getWriter();
 } catch (IOException ex) {
 throw new IllegalStateException("Cannot return writer: " + ex,ex);
 }
 }

 public void nothingToSay(){
 HttpServletResponse httpServletResponse = (HttpServletResponse) response;
 httpServletResponse.setStatus(204);
 this.asyncContext.complete();
 }

 public String getChannel() {
 return channel;
 }
}

LISTING 6 LISTING 7 LISTING 8a LISTING 8b

Download all listings in this issue as text

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://lightfish.adam-bien.com
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012
javascript:openPopup('listing7_p61')
javascript:openPopup('listing8a_p61')
javascript:openPopup('listing8b_p61')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

62

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

method setMaxNumberOf-
ConcurrentRequests exposes
a writable property to the
application server’s adminis-
tration or configuration facili-
ties. Pooling of already created
ManagedConnection instances
requires implementation of
the matchManagedConnections
method.

Usually, a connection is dif-
ferentiated by the username,
password, or other security cre-
dentials. Here, all thread pools are equal,
so we just match the connection using
the ConnectionRequestInfo instance.

Both the ManagedConnection
implementation (Connection) and
the ManagedConnectionFactory
(ConnectionFactory) realize connection
management at the logical level and
are highly reusable. In addition, the
Connection class fires events to notify
the application server runtime about the
current state (see Listing 9a, Listing 9b,
and Listing 9c).

The Connection instance manages a
List of ConnectionEventListeners and fires
events on close, commit, begin, or roll-
back events. Our connector implemen-
tation is not transactional (but could be
implemented as such), so most of the
events will never fire.

As a logical part, the Connection
also manages its physical counter-
part. JCAExecutor is the actual “meat”
of the connector. Runnable instances
are passed to the execute method to
be asynchronously executed by the
WorkManager (see Listing 10).

The JCAExecutor implements
the java.util.concurrent
.Executor interface, which will
be directly used by the appli-
cation and is created by the
JCAExecutorFactory, as shown in
Listing 11.

JCAExecutor with its
JCAExecutorFactory are the
actual domain-specific
implementation. Most of
the ManagedConnection and
ManagedConnectionFactory

implementations are business logic–
agnostic and could be reused for other
JCA implementations. All classes have
to be packaged into a JAR file that has
the .rar extension and deployed to the
application server.

Java EE applications do not care about
the JCA implementation and are inter-
ested only in the asynchronous execu-
tion of tasks in a managed environment.
The application-facing API consists of a
single interface that returns the Executor
to the application, as shown in Listing 12.

Now Java EE 6 applications can access
a managed Executor implementation as
easily as in a Java SE environment (see
Listing 13).

Java EE 7—Even Better
With five classes and a simple Maven
Project Object Model—and without any
XML deployment descriptors—you get
a flexible thread pool implementation
that is fully managed by the application
server and could be extended to sup-
port transactions, security, and prog-
ress monitoring.

EVEN BETTER

Java EE 7 will
come with
even more
interesting
concurrency
features.

public class Connection
 implements ManagedConnection {

 private ConnectionFactory mcf;
 private PrintWriter out;
 private JCAExecutor fileConnection;
 private ConnectionRequestInfo connectionRequestInfo;
 private List<ConnectionEventListener> listeners;

 Connection(PrintWriter out,ConnectionFactory mcf, ConnectionRequestInfo
connectionRequestInfo) {
 this.out = out;
 this.mcf = mcf;
 this.connectionRequestInfo = connectionRequestInfo;
 this.listeners = new LinkedList<ConnectionEventListener>();
 }

 public Object getConnection(Subject subject, ConnectionRequestInfo
connectionRequestInfo)
 throws ResourceException {
 fileConnection = new JCAExecutor(out,this,mcf, connectionRequestInfo);
 return fileConnection;
 }

 public void destroy() {
 this.fileConnection.destroy();
 }

 public void cleanup() {
 }

 public void associateConnection(Object connection) {
 this.fileConnection = (JCAExecutor) connection;

 }

LISTING 9a LISTING 9b LISTING 9c LISTING 10 LISTING 11

Download all listings in this issue as text

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012
javascript:openPopup('listing9b_p62')
javascript:openPopup('listing9c_p62')
javascript:openPopup('listing10_p62')
javascript:openPopup('listing11_p62')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

63

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

Java EE 7 will come with even more
interesting concurrency features. JMS
2.0 is going to vastly simplify the pro-
cess of sending and receiving messages.
EJB 3.2 will likely support additional
quality-of-service features, such as
@MaxConcurrency. Java EE 7 will prob-
ably include a dedicated concurrency
specification.

Threads managed by an application
are not visible to the application server
runtime. It is not possible to throttle the
concurrency or monitor the application’s
behavior. Manually created threads

not only threaten scalability, but they
also massively affect the robustness
of the overall system. The more cloud-
ready your application needs to be, the
more important central management
of scarce resources and, thus, threads
becomes. </article>

LEARN MORE
•	connectorZ

•	 Real World Java EE Night Hacks—
Dissecting the Business Tier, page 70
(press.adam-bien.com, 2011)

import java.io.Serializable;
import java.util.concurrent.Executor;
import javax.resource.Referenceable;

public interface WorkExecutorFactory extends Serializable, Referenceable {
 Executor newExecutor();
}

LISTING 12 LISTING 13

Download all listings in this issue as text

YOUR
LOCAL JAVA
USER GROUP
NEEDS YOU

Find your JUG here

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jcp.org/en/jsr/detail?id=236
http://jcp.org/en/jsr/detail?id=236
http://connectorz.adam-bien.com
http://press.adam-bien.com
http://press.adam-bien.com
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012
http://www.java.net/jugs/java-user-groups
javascript:openPopup('listing13_p63')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

64

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//mobile and embedded /

Java ME applications are notori-
ously hard to back up. In this

article, I will go through the pro-
cess of creating a MIDlet applica-
tion that will allow you to select a
destination within your Bluetooth
network, create a schedule to back
up your address book, perform an
on-demand backup, and log (and
view) all of this activity. You can,
in addition, use this MIDlet to
extend backup activities to cover

other data that your device allows
you to access.

Note: The source code for the
application described in this
article can be downloaded as a
NetBeans project here.

The Application Flow
Figure 1 shows the target applica-
tion in action.

The application flow is divided
among the four options, which
represent logical activities. You
can look for destinations within
the device’s Bluetooth environ-
ment, create and edit a sched-
ule to control when the backup
should be run automatically,
perform an on-demand backup,
and view the log.

Under normal circumstances,
you would create a schedule, set
up the destination once, and then
not worry about anything else. In
reality, only a signed application
with the proper permissions would
be able to do these things, because
you would need to grant the appli-
cation permission to read data and

initiate transfers (both
on the device and on
the target platform).

I discuss the appli-
cation flow in terms of
these logical modules
next by covering them
one by one.

Looking for
Destinations
I initiated the develop-
ment of this MIDlet
with the intention of
using Wi-Fi to detect devices.
However, even though the File
Transfer API (JSR 75) supports the
discoverability and manipula-
tion of folders on remote devices,
none of the implementation APIs
(including Oracle’s) supports
this. I used Bluetooth instead to
discover devices and the services
they allowed.

I described the Bluetooth dis-
covery process and how we can
use it to send files over the net-
work in a previous article, but I will
cover the main points again here.

The basic code from
that previous article
hasn’t changed much
because the process
of sending the data is
pretty much the same.

What is different is
that we need to search
for a Bluetooth con-
nection point, find the
OBEX push profile,
and then store that
information so the
MIDlet can reuse it

without any more input from you.
To do so, we create a RecordStore

and hold this connection point
(the actual connection URL) in
that database. This RecordStore
is called the Backup Store in the
code in Listing 1, and it is initiated
when the MIDlet starts.

If this destination is not set,
any attempt to create a backup
will result in a simple message
stating that a backup destination
is not set.

The actual backup destina-
tion is set after the discovery of

Wirelessly Back Up Your
Device’s Address Book
Learn to create a MIDlet to schedule a backup of your address book—and more.

VIKRAM GOYAL
BIO

Figure 1

BACKUP PLAN

You can, in
addition, use this
MIDlet to extend
backup activities to
cover other data that
your device allows
you to access.

PHOTOGRAPH BY
JONATHAN WOOD/
GETTY IMAGES

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012
https://blogs.oracle.com/mobility_techtips/entry/discovering_devices_and_sending_files
mailto:tech%40craftbits.com?subject=
javascript:openPopup('audio_p64')
javascript:openPopup('bio_p64')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

65

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//mobile and embedded /

a location, as shown in the
code in Listing 2 (from the
BluetoothServices class).

Note that we store the
actual connection URL
so that we don’t need to
discover the device or the
services each time the
backup needs to run. You
can, of course, look for new
destinations and store
them if preferred.

The rest of the code isn’t
much different from my
previous article. BluetoothServices imple-
ments the DiscoveryListener interface, so
the deviceDiscovered, servicesDiscovered,
serviceSearchCompleted, and inquiry-
Completed methods all have a concrete
implementation with related UI updates.

The doSend() method is
invoked when the MIDlet
wants to send compressed
data to the destination.
(There is more informa-
tion about compression
later in this article). The
doSend() method accepts
the destination URL, the
filename that we want to
use for this backup, and a
ByteArrayOutputStream that
holds the actual data.

Creating and Editing a Schedule
To keep this part simple, you have the
option of selecting whether the backup
should run automatically on a daily or
weekly basis. Adding the ability to spec-
ify a time is easy enough and is left as an
exercise for you.

Figure 2 shows the UI for setting the
schedule.

The top of the screen shows what the
current schedule is set to, and below
that you can select whether to change
the schedule. Selecting the Save UI
option stores this information in another
RecordStore called the Schedule Store.

The following code shows how we
can save the schedule into our Schedule
Store and then set up an alarm for self-
invocation of the MIDlet.

This is where I use the registerAlarm()
method of PushRegistry to set an alarm
to restart the MIDlet at the next sched-
uled run, which is calculated by taking
into account that there are 86,400,000
milliseconds in a day and 604,800,000
milliseconds in a week. Note that this is

set to run in a separate thread to avoid
any deadlock issues.

When the MIDlet automatically starts
at the next scheduled run, the start-
Backup() method is called at the end of
the constructor. This way, the MIDlet is
launched automatically and starts the
backup. In the constructor, I also re-
register the next time the MIDlet should
run based on the nextRun variable picked
up from the Schedule Store where it is
stored, as shown in Listing 3.

Viewing the Log
Before we get to the actual backup, let’s
look at the View Log UI option. Quite
simply, it stores its data at certain crucial
points in the MIDlet cycle in yet another

RecordStore, the Log Store, as shown in
Listing 4.

At each call to the log(String message)
method, a time stamp is added to the
message and stored in the log, as shown
in Listing 5.

I have also provided an option to clear
the log, because it can get fairly large.
Selecting the Clear Log UI option simply
deletes anything in the Log Store:

Creating a Backup
The actual creation of the backup hap-
pens in two methods: startBackup() and

lrs.closeRecordStore();
RecordStore.deleteRecordStore("Log
 Store");

Figure 2

EASY ADDS

I have backed up only
the address book. It
would be easy to
add a to-do list, a
calendar list, or any
other data that the
MIDlet may access.

Download all listings in this issue as text

 // load up the backup dest record store
 rs = RecordStore.openRecordStore("Backup Store", false);
 // this will get the last record--the last destination for our Bluetooth Device
 backupDest = new String(rs.getRecord(rs.getNumRecords()));
 if(backupDest == null) throw new RecordStoreNotFoundException("");
 backupDestSet = true;

LISTING 1 LISTING 2 LISTING 3 LISTING 4 LISTING 5

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012
javascript:openPopup('listing2_p65')
javascript:openPopup('listing3_p65')
javascript:openPopup('listing4_p65')
javascript:openPopup('listing5_p65')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

66

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//mobile and embedded /

createBackup(), although the latter is pri-
vate and called only via the startBackup()
method.

The startBackup() method is called
either automatically when the MIDlet
starts (via your initiation or via the
PushRegistry alarm) or when you select
the Do Backup Now UI option.

As expected, the startBackup() method
first checks to see whether a backup
destination has been defined. If the des-
tination has not been defined, it alerts
you that the backup can’t start. Next,
it creates a thread to do the backup in
a manner that will not block the main
thread. See Listing 6.

In the code in Listing 6, I have backed
up only the address book. It would be
easy to add a to-do list, a calendar list,
or any other data that the MIDlet may

access (which, admittedly, is limited and
heavily implementation dependent).

To make the data transfer faster, I
used an external library to compress the
data before it is sent over the Bluetooth
channel. This library, called compress-
j2me, is extremely small and provides
good compression.

I start by creating two output streams:
one for holding the data and the other
to compress it. The compression stream
takes the first stream as the input and

compresses it as it goes along. The
actual looking up of the data is done in
the createBackup() method.

The code in Listing 7 goes through
the items in the address book, looks up
a valid data_format for serializing the
items (provided via the PIM API) and
iterates over individual items, while
adding these items to the compres-
sion stream. At the end, the stream is
flushed and the data written out.

Once the createBackup() method is fin-
ished, the startBackup() method uses the
doSend() method of the BluetoothServices
class we discussed earlier to actually
send the data to the connected device.

If you have established a trusted and

paired connection between your device
and its backup destination, you will get
the data in a pre-established Bluetooth
Exchange folder. I have tested this pro-
cess with a live device (Nokia N95) and
confirmed that it works perfectly. See
Figure 3, Figure 4, and Figure 5, which
show the activation of the PushRegistry,
the destination confirmation, and data
transfer confirmation on the target
device. </article>

Figure 3 Figure 4

Figure 5

LEARN MORE
•	“�Discovering Devices and Sending Files

via Bluetooth in Java ME”

•	The compress-j2me project

 new Thread() {
 public void run() {
 try {
 log("Backup Started At: " + new Date());
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 LZCOutputStream os = new LZCOutputStream(baos);
 // the address book; it's easy to add other lists
 ContactList addressbook =
 (ContactList)(PIM.getInstance().openPIMList(
 PIM.CONTACT_LIST, PIM.READ_ONLY));
 createBackup(addressbook, PIM.CONTACT_LIST, os);
 btServices.doSend(backupDest, "data.gz", baos);
 msgAlert.setString("Done");
 display.setCurrent(msgAlert, list);
 log("Backup Finished At: " + new Date());
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 }.start();

LISTING 6 LISTING 7

Download all listings in this issue as text

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://code.google.com/p/compress-j2me/
http://code.google.com/p/compress-j2me/
https://blogs.oracle.com/mobility_techtips/entry/discovering_devices_and_sending_files
https://blogs.oracle.com/mobility_techtips/entry/discovering_devices_and_sending_files
http://code.google.com/p/compress-j2me/
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012
javascript:openPopup('listing7_p66')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

67

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//mobile and embedded /

In the summer of 2005, while
at a Microsoft conference, I

was asked what I thought of the
then-current technical fad, the
object-relational mapping (ORM)
tool. My response, predictably, got
some attention. I said that ORM is
the Vietnam of computer science.

At the time, I was definitely
“swimming upstream” because
“everybody” knew that the only
reasonable place to store data was
in a relational database, prefer-
ably a big one. In fact, the bigger,
the better—who wouldn’t want
more RAM, more disk space,
faster I/O, the works.

I argued, in part, that no mat-
ter how much we try, the different
“shapes” of the data—for exam-
ple, our graphs of objects and the
database’s rectangular tables—
create mismatches that are very
hard to eliminate, no matter how
sophisticated the tooling or librar-
ies. It’s particularly gruesome
to try to shove a hierarchy into a
table, for example, and trying to
capture a cyclic graph (such as

the one we see with the Facebook
platform) is nearly impossible.
Not that it can’t be done, but
when a subject requires an entire
book on just that one idea (Joe
Celko’s Trees and Hierarchies in
SQL for Smarties), there’s prob-
ably more work there than we’d
really like.

As the NoSQL movement
gained prominence, develop-
ers realized that perhaps the
relational database isn’t the only
place data needs to go. It might
be the last place that data ends
up, because that’s where we have
the wonderful tools for analysis,
reporting, and transformation, but
that doesn’t mean it’s the only
kind of storage system available.

For decades, other storage
systems have been quietly han-
dling data quite nicely, efficiently,
and compactly, and one of those,
Berkeley DB, has been a staple for
UNIX-based systems for years.
Oracle acquired Berkeley DB a
number of years ago and has
made a Java API available for it.

Using Oracle
Berkeley DB Java
Edition is quite
straightforward, partly
due to its surface
similarities to the
relational model, but
make no mistake—
attempts to use it as
such are likely to result
in serious failure.

Essentials
Unlike many database
APIs, the Java API for
Oracle Berkeley DB
Java Edition has two “levels.”

The first level, the base API, is a
low-level read/write set of opera-
tions that essentially thinks of
everything in terms of key/value
pairs, where the values are byte
arrays that Java developers know
how to create and parse, typically
using either standard Java serial-
ization or Oracle Berkeley DB Java
Edition’s own “bind” APIs.

As a general rule, unless you
want or need to operate at this

level of storage (and
for the most part, the
only reason you would
want to do that is to be
able to support dupli-
cate primary keys), it’s
useful only to know
that such accessibility
is available and move
on to the second API.

Developers who
remember the C-based
Berkeley DB APIs
fondly will probably
find themselves drawn
to the base API, but be

warned: the Oracle Berkeley DB
Java Edition manual clearly states
that the file format is not the same
format used by the C edition,
so files aren’t portable between
each API. Oracle Berkeley DB Java
Edition files are portable across
different Java platforms, however.

The second level, called the
Direct Persistence Layer (DPL)
API, is a more object-centric
approach to data storage and
more approachable for develop-

PHOTOGRAPH BY
PHIL SALTONSTALL

TED NEWARD
BIO

Part 1

Oracle Berkeley DB Java Edition’s
Java API
Learn how the Java API for Oracle Berkeley DB Java Edition works.

BEYOND RDBMS

As the NoSQL
movement gained
prominence,
developers realized
that perhaps
the relational
database isn’t
the only place
data needs to go.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx
http://docs.oracle.com/cd/E17277_02/html/java/index.html
mailto:ted%40tedneward.com?subject=
javascript:openPopup('bio_p67')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

68

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//mobile and embedded /

ers who are familiar with ORM tools,
such as the Java Persistence API (JPA).
However, it’s important to note that
Oracle Berkeley DB Java Edition isn’t an
ORM, because there aren’t any actual
tables in the storage files. Instead, the
objects go directly into the database,
without stopping to be pounded into
rectangles first.

Exploration Testing
When working with a new API, one
approach I like to take is called explora-
tion testing. Essentially, I write unit tests,
but not to test the product in question.
Instead, exploration tests serve several
different purposes:
■■ They provide a simple framework in

which to try a number of things.
■■ They keep the exploration focused on

small incremental progress.
■■ They let me make assertions first and

then see if those assertions hold.
■■ And, most importantly, when a new

version of the product comes out,
running the tests against the new ver-
sion tells me if anything has changed.

Getting Started
A general rule of thumb is that before
any data can be stored or retrieved from
a database, the program has to connect
to (or “open”) the database. In a tradi-
tional client-server RDBMS scenario,
“opening” the database consists of
providing networking information and
credentials to (typically) open a TCP/IP
socket to the database and authenticate
against it. However, in an embedded
database such as Oracle Berkeley DB

Java Edition, opening the database usu-
ally consists of telling the API where to
find the database on disk and whether to
create the database if it doesn’t exist.

In the Oracle Berkeley DB Java Edition
API, doing so consists of creating an
Environment object to represent the
database environment. This requires
a Java File object, indicating the direc-
tory into which the data files will go,
which must exist ahead of time, plus
an EnvironmentConfig object, which
tells Oracle Berkeley DB Java Edition
how it should behave under particular
conditions.

For example, in order to keep the
tests clean, the exploration tests
should create and destroy the data-
base each time, which means that
EnvironmentConfig will need to have
its allowCreate property set to true, as
shown in Listing 1. Then, as can be
inferred from Listing 1, closing the envi-
ronment is done using the close() call.

Assuming that someSubdir exists in
the directory in which the exploration
tests are run, glancing inside reveals
not just one file but several. Of the files
there, the critical ones are suffixed
with .jdb, and they are incrementally
increasing numeric files. The first will
be 00000000.jdb, and this is where
the data will be written as a series of
appending writes one after another.

In fact, the Oracle Berkeley DB Java
Edition manual takes care to note that
backing up these files doesn’t require
closing the database, as long as the
backup process copies these files in order,
starting from 0 and working upward.

EntityStore
Once the database environment is
opened, an EntityStore must also be
opened on top of Environment in order to
work with the DPL API. (Remember, DPL
is an abstraction on top of the underly-
ing key/byte-array-value store.)

Similar to how the Environment
uses an EnvironmentConfig to

describe configuration options for the
Environment, the EntityStore is created
with an EntityStoreConfig. And, just as
EnvironmentConfig has to be told it’s OK
to create the files if they don’t exist, the
same is true for EntityStoreConfig, and
this is done, again, through the
allowCreate property.

All of this (and just about everything

 @Test public void openAndCloseADatabase()
 throws DatabaseException
 {
 EnvironmentConfig config = new EnvironmentConfig();
 config.setAllowCreate(true);
 Environment dbEnv =
 new Environment(new File("./someSubdir"), config);

 dbEnv.close();
 }

LISTING 1

Download all listings in this issue as text

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

69

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//mobile and embedded /

else to do with the DPL API) comes out
of the com.sleepycat.persist package.

For future tests, this code is moved
to an @Before-annotated openDatabase
method and an @After-annotated
closeDatabase method, as shown in
Listing 2.

Notice that I deliberately chose to
delete the directory and re-create it each
time just to ensure that no data files are
lingering after each test. Obviously, for
a production system, the logic would
be different.

Entities
Just as with the JPA or any other object-
based storage system, when working
with the DPL API, we store and retrieve
instances of objects.

Oracle Berkeley DB Java Edition knows
that these objects are to be persisted
because the class is annotated with
the @Entity annotation. In addition, at
least one field on the class must also be
annotated with the @PrimaryKey anno-
tation, whose purpose seems obvious,
but whose actual use is different than in
some other ORM systems.

For this example, let’s assume the
system is a blog engine (see Listing 3).

While it might appear that we could
store a new blog post to the EntityStore
through some kind of “store” method
on the EntityStore, it’s not that simple.
The Oracle Berkeley DB Java Edition
engine insists that we pay closer atten-
tion to the indexes defined within the
store. The most obvious index is the
one that keys off the @PrimaryKey for a
given type.

To store or retrieve an object by its
primary key, we first have to obtain that
index (a PrimaryIndex<K,V> type, where K
is the PrimaryKey-annotated type and V
is the Entity-annotated type that owns it)
from the EntityStore.

Once that’s done, we can use the
PrimaryIndex to put objects into the
EntityStore and use get to retrieve objects
from the EntityStore by the PrimaryKey, as
shown in Listing 4.

Nary an SQL statement is found,
which is great, assuming that the exact
object (or at least its primary key value)
is known to the code doing the lookup
for the object. Sometimes, though, the
entire list of objects (such as a list of the
last 10 blog posts) must be looked at, in
which case an entity iterator is needed,
which is, again, retrieved from the
PrimaryIndex<> object (see Listing 5).

Take very careful note of the close() call
on the cursor at finish—failing to do so
will yield an exception from the data-
base runtime when the database itself is
closed. (This is best dropped into a finally
block, but because these are just explo-
ration tests, we can live with it the way it
is for now.)

For those cases where the primary
key needs to be an artificial key, such as
in a monotonically increasing numeric
sequence, Oracle Berkeley DB Java
Edition’s API can generate that key auto-
matically by modifying the @PrimaryKey
annotation to use a “sequence,” for
example:

This is equivalent to using glob-
ally unique identifiers (GUIDs) as your
primary key—keys that are entirely
opaque and for which the value is
irrelevant to the actual contents of the
object. Any ability to browse objects
and fetch them directly by primary key
is lost, but nasty business problems are
avoided when using mutable state for
primary keys.

Secondary Keys
While this is great, sometimes we need
to fetch objects by a criterion other
than the primary key. For example, in
a blog system, the blog often needs to
show the blog entries for a given day,
rather than by their title. This means
that the database has to pony up the
objects via a lookup scheme other than
the primary key.

private @PrimaryKey(sequence=
"Sequence_Namespace") int id;

Download all listings in this issue as text

public class BDBTest
{
 // ...

 File dbDir = new File("./data");
 Environment dbEnv;
 EntityStore dbStore;
 @Before public void openDatabase()
 {
 if (!dbDir.exists())
 dbDir.mkdir();

 EnvironmentConfig config = new EnvironmentConfig();
 config.setAllowCreate(true);
 dbEnv = new Environment(dbDir, config);

 StoreConfig storeConfig = new StoreConfig();
 storeConfig.setAllowCreate(true);
 dbStore = new EntityStore(dbEnv, "EntityStore", storeConfig);
 }
 @After public void closeDatabase()
 {
 dbStore.close();

 dbEnv.close();

 dbDir.delete();
 }
}

LISTING 2 LISTING 3 LISTING 4 LISTING 5

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012
javascript:openPopup('listing3_p69')
javascript:openPopup('listing4_p69')
javascript:openPopup('listing5_p69')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

70

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//mobile and embedded /

In Oracle Berkeley DB Java Edition,
this is done by annotating fields with
@SecondaryKey and retrieving them
from the EntityStore by first obtaining
a SecondaryIndex instance, as shown in
Listing 6.

The SecondaryIndex<> type is tied to
the PrimaryIndex<> type directly. The
first generic parameter is the type of
the SecondaryKey-annotated field; the
second generic parameter is the type of
the PrimaryKey-annotated field; and the
third type is the Entity type itself. The
constructor similarly uses the index, the
type of the SecondaryKey-annotated field,
and the name of that field.

And if the system needs to fetch
a “range” of objects along that
SecondaryIndex, two example values (one
“from” and one “to”) need to be passed
in to the entities() call, along with a
Boolean for each indicating whether that
example value should be included in the
returned set (true means inclusive and
false means exclusive). See Listing 7.

By the way, the SecondaryKey
instances can have a variety of differ-
ent relationships to their values, as
expressed by the relate parameter in
the annotation description. The Javadoc
contains the details, but essentially
it’s the usual 1:1, 1:n, n:1, or m:n rela-
tionships seen in every other database
system on the planet. Because multiple
blog posts can be posted on a single day,
the postingDate field in the BlogPost type
is annotated appropriately:

Note that the MANY_TO_ONE is a
Relationship enumeration, so for this
to work, that Relationship type must be
imported statically; otherwise, the code
needs to read Relationship.MANY_TO_
ONE, as usual.

Wrapping Up . . . for Now
In Part 2, there will be more to explore
on how to store more-complex objects,
but this article provided enough to get
a feel for how Oracle Berkeley DB Java
Edition’s DPL API works. It’s essentially
an object persistence store, instead of an
object-relational persistence store, and
this means that there is far less admin-
istrative work in order to persist objects.

In fact, compared to a relational
schema, there’s effectively no work
whatsoever: no data definition language,
no server instances to stand up, no
authentication credentials to establish,
no authorization rules, nothing. Just cre-
ate a directory, and away we go!

One caveat: As future enhancements
are made to the BlogPost type (perhaps
we will add an Author type, describing
the author of the blog post for those
blog systems that are multi-tenanted,
such as WordPress), Oracle Berkeley
DB Java Edition will try to just roll with
the changes that occur in those types,
thus allowing you to refactor additively
(meaning add-only kinds of refactor-
ings, for example, adding fields) with-
out requiring any change to code. But
changes such as adding the SecondaryKey
annotation to the postingDate field will
require a more hands-on approach to
evolve existing data stores.

For exploration tests, this isn’t a big
deal, particularly because I’m blowing
away the database entirely after each
test. But for real databases, this could
present a problem between version 1
and version 2. Oracle Berkeley DB Java
Edition calls this evolution mutation,
and while the database can handle
some of the kinds of mutation that
occur during refactoring, complex cases

might require you to write utilities to
migrate databases by hand.

Finally, I am not advocating that
every relational database instance
known to humanity be completely
and utterly destroyed and replaced by
Oracle Berkeley DB Java Edition, Apache
CouchDB, or anything else.

Stay tuned for Part 2, where things will
get a little more complex. </article>

private @SecondaryKey(relate=
MANY_TO_ONE) Date postingDate;

 @Test public void storeAndRetrieveOneByDate()
 {
 BlogPost newPosting =
 new BlogPost("The Vietnam of Computer Science");

 PrimaryIndex<String,BlogPost> primaryIndex =
 dbStore.getPrimaryIndex(String.class, BlogPost.class);
 primaryIndex.put(newPosting);

 SecondaryIndex<Date, String, BlogPost> dateIndex =
 dbStore.getSecondaryIndex(primaryIndex, Date.class,
 "postingDate");

 EntityCursor<BlogPost> postCursor =
 dateIndex.entities();
 for (BlogPost post : postCursor)
 {
 assertTrue(post.getTitle().contains("Computer Science"));
 }
 postCursor.close();
 }

LISTING 6 LISTING 7

Download all listings in this issue as text

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://java.net/projects/java-magazine/downloads/directory/JulyAugust%202012
javascript:openPopup('listing7_p70')

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H

71

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//fix this /

GOT THE ANSWER?
Look for the answer in the next issue. Or submit your own code challenge!

In the May/June 2012 issue, Angela
Caicedo presented us with a JavaFX code challenge
around binding. She asked us to consider a code
fragment and determine the output.
The correct answer is #4: you will get an exception
when you try to call the set method on myBoundInt.
What is happening? myBoundInt is a bound variable,
and it is not supposed to be changed directly. You can
only change the value of myBoundInt through myInt,
the property myBoundInt is bound to.

This issue s challenge comes from Jason Hunter (top left),
author of Java Servlet Programming, 2nd Edition (O Reilly
Media) and deputy CTO at MarkLogic, and Boris Shukhat,
applications programming manager, vice president, Bank of
America Merrill Lynch.

ART BY I-HUA CHEN

2 THE CODE
Below is a trimmed code snippet from the pool class. Can you spot the
problem and fix it in place without redesigning the whole program?
 private Hashtable connections = new Hashtable();
 private void initializePool(...) ... {
 for (int i = 0; i < initialPoolSize; i++)
connections.put(getNewConnection(...), Boolean.FALSE); //
false=free
 }
 }
 public Connection getConnection() ... {
 // ... find a connection with a FALSE flag ...
 connections.put(con, Boolean.TRUE);
 return con;
 }
 public void returnConnection(Connection returned) {
 connections.put(returned, Boolean.FALSE);
 }

3 WHAT S THE FIX?
1) �Instead of Connection, use a PooledConnection.
2) �Instead of Hashtable, use another implementation of

the Map interface.
3) �Extend the problematic Connection implementation,

overriding some methods.
4) �Create an implementation of Connection wrapping the

problematic Connection.

Hint: The bug in the
pool class is not a
concurrency issue.

1 THE PROBLEM
The ConnectionPool.java example from Chapter 9 of
Java Servlet Programming has a subtle bug. The pool code
worked fine for many years, but a recent upgrade to a
JDBC driver broke it.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oraclejavamagazine-digital.com/javamagazine/20120506?folio=64
http://shop.oreilly.com/product/9780596000400.do

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2012

JA
VA

 T
EC

H
CO

M
M

UN
IT

Y
JA

VA
 IN

 A
CT

IO
N

AB
O

U
T

U
S

blog

EDITORIAL
Editor in Chief
Justin Kestelyn
Senior Managing Editor
Caroline Kvitka
Community Editors
Cassandra Clark, Sonya Barry,
Yolande Poirier
Java in Action Editor
Michelle Kovac
Technology Editors
Janice Heiss, Tori Wieldt
Contributing Writer
Kevin Farnham
Contributing Editors
Blair Campbell, Claire Breen, Karen Perkins

DESIGN
Senior Creative Director
Francisco G Delgadillo
Senior Design Director
Suemi Lam
Design Director
Richard Merchán
Contributing Designers
Jaime Ferrand, Nicholas Pavkovic
Production Designers
Sheila Brennan, Kathy Cygnarowicz

PUBLISHING
Publisher
Jeff Spicer
Production Director and
Associate Publisher
Jennifer Hamilton  +1.650.506.3794
Senior Manager, Audience Development
and Operations
Karin Kinnear  +1.650.506.1985

ADVERTISING SALES
Associate Publisher
Kyle Walkenhorst  +1.323.340.8585
Northwest and Central U.S.
Tom Cometa  +1.510.339.2403
Southwest U.S. and LAD
Shaun Mehr  +1.949.923.1660
Northeast U.S. and EMEA/APAC
Mark Makinney  +1.805.709.4745
Recruitment Advertising
Tim Matteson  +1 310-836-4064
Mailing-List Rentals
Contact your sales representative.

RESOURCES
Oracle Products
+1.800.367.8674 (U.S./Canada)
Oracle Services
+1.888.283.0591 (U.S.)

Oracle Press Books
oraclepressbooks.com

ARTICLE SUBMISSION
If you are interested in submitting an article, please e-mail the editors.

SUBSCRIPTION INFORMATION
Subscriptions are complimentary for qualified individuals who complete the
subscription form.

MAGAZINE CUSTOMER SERVICE
java@halldata.com  Phone +1.847.763.9635

PRIVACY
Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer
that your mailing address or e-mail address not be included in this program, contact
Customer Service.

Copyright © 2012, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise
reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY
DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY
DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. The
information is intended to outline our general product direction. It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied
upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s
products remains at the sole discretion of Oracle. Oracle and Java are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly with a free subscription price by
Oracle, 500 Oracle Parkway, MS OPL-3C, Redwood City, CA 94065-1600.

Digital Publishing by Texterity

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Source: from Dice.com’s “Dice Report”; “January 2012: The Top Spots”

Get Certified with Oracle University

 Prepare with Java experts

 In the classroom or online

 Pass or retest for free

 And save up to 20%

Java Skills
#1 Priority
Of Hiring Managers

Click to Register

http://oracle.com/javamagazine
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:javamag_us%40oracle.com?subject=
mailto:jennifer.hamilton%40oracle.com?subject=
mailto:karin.kinnear%40oracle.com?subject=
mailto:kyle%40sprocketmedia.com?subject=
mailto:thomas.cometa%40sbcglobal.net?subject=
mailto:shaun%40sprocketmedia.com?subject=
mailto:mark.makinney%40sprocketmedia.com?subject=
mailto:Tim%40MattesonMail.com?subject=
http://oraclepressbooks.com
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle-sub.halldata.com/site/ORA000263JFnew/init.do?&PK=NAFORJ
mailto:java%40halldata.com?subject=
mailto:java%40halldata.com?subject=
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=532&sc=WWOU11042412MPP012C007

	Table of Contents
	COMMUNITY
	From the Editor
	Java Nation
	JCP Executive Series: Q&A with Gil Tene

	JAVA IN ACTION
	Building a Better Spreadsheet
	Direct Connection

	JAVA TECH
	New to Java: Learning and Teaching Object Orientation with BlueJ
	New to Java: Introduction to Web Service Security
	Q&amp;A: Talking with Adam Bien
	Tools: DEVELOPER POWER
	Java Architect: HotSpot's Hidden Treasure
	Java Architect: Fork/Join Framework for Client Java Applications
	Java Architect: How to Modify javac
	Rich Client: Lazy Evaluation, Lazy Initiation, and Custom Bindings in JavaFX 2
	Enterprise Java: Threading and Concurrency
	Mobile and Embedded: Wirelessly Back Up Your Device's Address Book
	Mobile and Embedded: Oracle Berkeley DB Java Edition's Java API
	Fix This

